Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-26T03:01:48.465Z Has data issue: false hasContentIssue false

Nonlinear dust–ion acoustic waves in a dusty plasma with non-extensive electrons and ions

Published online by Cambridge University Press:  08 February 2013

MUSTAPHA BACHA
Affiliation:
Plasma Physics Group, Theoretical Physics Laboratory, Faculty of Sciences-Physics, University of Bab-Ezzouar, USTHB, B.P. 32, El Alia, Algiers 16111, Algeria ([email protected]; [email protected])
MOULOUD TRIBECHE
Affiliation:
Plasma Physics Group, Theoretical Physics Laboratory, Faculty of Sciences-Physics, University of Bab-Ezzouar, USTHB, B.P. 32, El Alia, Algiers 16111, Algeria ([email protected]; [email protected])

Abstract

Using the reductive perturbation approach, dust–ion acoustic solitons and double layers (DLs) have been studied in a dust–electron–positron–ion (d-e-p-i) plasma composed of q-distributed electrons and positrons, warm fluid ions, and a fraction of immobile dust grains. Existence domains of either solitary waves or DLs are presented and their parametric dependence determined. It is found that particle non-extensivity, dust concentration and positron concentration may drastically affect these existence domains and may play a key role in defining the polarity of these localized structures. Our results should assist in interpreting the nonlinear structures that may occur in astrophysical environments.

Type
Papers
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abe, S. and Okamoto, Y. 2001 Statistical Mechanics and Its Applications. Berlin, Heidelberg: Springer.Google Scholar
Ait Gougam, L. and Tribeche, M. 2011a Astrophys. Space Sci. 331, 181.CrossRefGoogle Scholar
Ait Gougam, L. and Tribeche, M. 2011b Phys. Plasmas 18, 062102.CrossRefGoogle Scholar
Amour, R. and Tribeche, M. 2010 Phys. Plasmas 17, 063702.CrossRefGoogle Scholar
Amour, R. and Tribeche, M. 2011 Phys. Plasmas 18, 033706.CrossRefGoogle Scholar
Asbridge, J. R., Bame, S. J. and Strong, I. B. 1968 J. Geophys. Res. 73, 5777.CrossRefGoogle Scholar
Bains, A. S., Tribeche, M. and Gill, T. S. 2011a Phys. Plasmas 18, 022108.CrossRefGoogle Scholar
Bains, A. S., Tribeche, M. and Gill, T. S. 2011b Phys. Lett. A 375, 2059.CrossRefGoogle Scholar
Begelman, M. C., Blandford, R. D. and Rees, M. D. 1984 Rev. Mod. Phys. 56, 255.CrossRefGoogle Scholar
Chen, F. F. 1974 Introduction to Plasma Physics. New York: Plenum.Google Scholar
Christon, S. P., Mitchell, D. G., Williams, D. J., Frank, L. A., Huang, C. Y. and Eastman, T. E. 1988 J. Geophys. Res. 93, 2562.CrossRefGoogle Scholar
Divine, N. and Garret, H. B. 1983 J. Geophys. Res. 88, 6889.CrossRefGoogle Scholar
Du, J. 2004 Phys. Lett. A 329, 262.CrossRefGoogle Scholar
Futaana, Y., Machida, S., Saito, Y., Matsuoka, A. and Hayakawa, H. 2003 J. Geophys. Res. 108, 151.CrossRefGoogle Scholar
Ghosh, S., Chaudhuri, T. K., Sarkar, S., Khan, M. and Gupta, M. R. 2002 Phys. Rev. E 65, 037401.Google Scholar
Ghosh, S., Sarkar, S., Khan, M. and Gupta, M. R. 2000 Phys. Lett. A 274, 162.CrossRefGoogle Scholar
Gibbons, G. W., Hawking, S. W. and Siklos, S. 1983 The Very Early Universe. Cambridge: Cambridge University Press.Google Scholar
Ginzburg, V. L. 1971 Sov. Phys. Usp. 14, 83.CrossRefGoogle Scholar
Ikezi, H. 1973 Phys. Fluids 16, 1668.CrossRefGoogle Scholar
Krimigis, S. M., Carbary, J. F., Keatth, E. P., Armstrong, T. P., Lanzerotti, L. J. and Gloeckler, G. 1983 J. Geophys. Res. 88, 8871.CrossRefGoogle Scholar
Latora, V., Rapisarda, A. and Tsallis, C. 2001 Phys. Rev. E 64, 056134.Google Scholar
Leubner, M. P. 2004 Phys. Plasmas 11, 1308.CrossRefGoogle Scholar
Lima, J. A. S., Silva, R. Jr., and Santos, J. 2000 Phys. Rev. E 61, 3260.Google Scholar
Liu, J. M., De Groot, J. S., Matt, J. P., Johnston, T. W. and Drake, R. P. 1994 Phys. Rev. Lett. 72, 2717.CrossRefGoogle Scholar
Liu, Z. and Du, J. 2009 Phys. Plasmas 16, 123707.CrossRefGoogle Scholar
Liu, B. and Goree, J. 2008 Phys. Rev. Lett. 100, 055003.CrossRefGoogle Scholar
Liu, Z., Liu, L. and Du, J. 2009 Phys. Plasmas 16, 072111.CrossRefGoogle Scholar
Liyan, L. and Du, J. 2008 Physica A 387, 4821.CrossRefGoogle Scholar
Lundlin, R., Zakharov, A., Pellinen, R., Borg, H., Hultqvist, B., Pissarenko, N., Dubinin, E. M., Barabash, S. W., Liede, I. and Koskinen, H. 1989 Nature 341, 609.CrossRefGoogle Scholar
Maksimovic, M., Pierrard, V. and Riley, P. 1997 Geophys. Res. Lett. 24, 1511.CrossRefGoogle Scholar
Melandso, F. 1996 Phys. Plasmas 3, 3890.CrossRefGoogle Scholar
Merlino, R. L., Barkan, A., Thompson, C. and D'Angelo, N. 1998 Phys. Plasmas 5, 1607; 1997 Plasma Phys. Control. Fusion 39, A421.CrossRefGoogle Scholar
Michel, F. C. 1982 Rev. Mod. Phys. 54, 1.CrossRefGoogle Scholar
Michel, F. C. 1991 Theory of Neutron Star Magnetospheres. Chicago, IL: University of Chicago Press.Google Scholar
Miller, H. R. and Witta, P. J. 1987 Active Galactic Nuclei. Berlin: Springer, p. 202.Google Scholar
Muñoz, V. 2006 Nonlin. Process. Geophys. 13, 237.CrossRefGoogle Scholar
Rao, N. N., Shukla, P. K. and Yu, M. Y. 1990 Planet. Space Sci. 38, 543.CrossRefGoogle Scholar
Ruderman, M. A. and Sutherland, P. G. 1975 Astrophys. J. 196, 51.CrossRefGoogle Scholar
Sagdeev, R. Z. 1966 In: Reviews of Plasma Physics, Vol. 4 (ed. Leontovich, M. A.). New York: Consultants Bureau, p. 23.Google Scholar
Shukla, P. K. and Mamun, A. A. 2002 Introduction to Dusty Plasma Physics. Bristol: Institute of Physics.CrossRefGoogle Scholar
Shukla, P. K. and Silin, V. P. 1992 Phys. Scr. 45, 508.CrossRefGoogle Scholar
Sturrock, P. A. 1971 Astrophys. J. 164, 529.CrossRefGoogle Scholar
Su, C. H. and Gardner, C. S. 1969 J. Math. Phys. 10, 536.CrossRefGoogle Scholar
Taruya, A. and Sakagami, M. A. 2003 Phys. Rev. Lett. 90, 181101.CrossRefGoogle Scholar
Tran, M. Q. 1979 Phys. Scr. 20, 317.CrossRefGoogle Scholar
Treumann, A. 1999 Phys. Scr. 59, 19.CrossRefGoogle Scholar
Tribeche, M. and Djebarni, L. 2010 Phys. Plasmas 17, 124502.CrossRefGoogle Scholar
Tribeche, M., Djebarni, L. and Amour, R. 2010 Phys. Plasmas 17, 042114.CrossRefGoogle Scholar
Tribeche, M., Hamdi, R. and Zerguini, T. H. 2000 Phys. Plasmas 7, 4013.CrossRefGoogle Scholar
Tribeche, M. and Merriche, A. 2011 Phys. Plasmas 18, 034502.CrossRefGoogle Scholar
Tribeche, M. and Shukla, P. K. 2012 Phys. Lett. A 376, 1207.CrossRefGoogle Scholar
Tsallis, C. 1988 J. Stat. Phys. 52, 479.CrossRefGoogle Scholar
Tsallis, C. 1994 In: New Trends in Magnetism, Magnetic Materials and Their Applications (ed. Moran-Lopez, J. L. and Sanchez, J. M.). New York: Plenum Press, p. 451.CrossRefGoogle Scholar
Tsallis, C. 1995 Chaos Solitons Fractals 6, 539.CrossRefGoogle Scholar
Verheest, F. 2000 Waves in Dusty Space Plasmas. Dordrecht: Kluwer.CrossRefGoogle Scholar
Washimi, H. and Taniuti, T. 1966 Phys. Rev. Lett. 17, 996.CrossRefGoogle Scholar
Younsi, S. and Tribeche, M. 2010 Phys. Plasmas 17, 043705.CrossRefGoogle Scholar