Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-28T03:29:08.242Z Has data issue: false hasContentIssue false

Nonlinear drift phase-space structures

Published online by Cambridge University Press:  13 March 2009

Sharadini Rath
Affiliation:
Institute For Plasma Research, Bhat, Gandhinagar 382 424, Gujarat, India
P. K. Kaw
Affiliation:
Institute For Plasma Research, Bhat, Gandhinagar 382 424, Gujarat, India

Abstract

The collisionless Vlasov–Poisson system in the drift approximation is examined for the existence of maximum-entropy nonlinear coherent solutions in the steady state. Two major nonlinear effects are taken into account. The first is the velocity-space trapping of particles, leading to closed trajectories in phase space. The second is the physical-space trapping of particles, leading to closed trajectories in the plane perpendicular to the magnetic field. The regions of validity of these nonlinearities are discussed and their relative importance demonstrated. Numerical solutions of the equations describing the nonlinear stationary states in one and two dimensions are presented.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Berman, R. H., Tetraeault, D. J., Dupree, T. H. 1985 Phys. Fluids 28, 155.CrossRefGoogle Scholar
Bernstein, I. B., Greene, J. M. & Kruskal, M. D. 1957 Phys. Rev. 108, 546.CrossRefGoogle Scholar
Ching, H. 1973 Phys. Fluids 16, 130.CrossRefGoogle Scholar
Dimits, A. M. 1988 Nonlinear mechanisms for drift wave saturation and induced particle transport. Ph.D. thesis, Princeton University.CrossRefGoogle Scholar
Dubin, D. H. E., Krommes, J. A., Oberman, C. & Lee, W. L. 1983 Phys. Fluids 26, 3524.CrossRefGoogle Scholar
Dupree, T. H. 1967 Phys. Fluids 10, 1049.CrossRefGoogle Scholar
Dupree, T. H. 1972 Phys. Fluids 15, 334.CrossRefGoogle Scholar
Dupree, T. H. 1978 Phys. Fluids 21, 783.CrossRefGoogle Scholar
Dupree, T. H. 1982 Phys. Fluids 25, 277.CrossRefGoogle Scholar
Federici, J. F., Lee, W. W. & Tang, W. M. 1987 Phys. Fluids 30, 425.CrossRefGoogle Scholar
Hirshman, S. P. 1980 Phys. Fluids 23, 562.CrossRefGoogle Scholar
Kadomtsev, B. B. 1965 Plasma Turbulence. Academic.Google Scholar
Lee, W. W. 1983 Phys. Fluids 26, 556.CrossRefGoogle Scholar
Lee, W. W., Krommes, J. A., Oberman, C. R. & Smith, R. 1984 Phys. Fluids 27, 2652.CrossRefGoogle Scholar
Lynden-Bell, D. 1967 Mon. Not. R. Astron. Soc. 136, 101.CrossRefGoogle Scholar
Mikhailovskaya, L. A. 1986 Soviet J. Plasma Phys. 12, 507.Google Scholar
Ott, E. & Manheimer, W. M. 1976 Phys. Fluids 19, 1035.CrossRefGoogle Scholar
Petviashvili, V. I. 1977 Sov. J. Plasma Phy. 3, 150.Google Scholar
Rath, S. & Kaw, P. K. 1991 Phys. Lett. 158 A, 139.CrossRefGoogle Scholar
Schamel, H. 1979 Physica Scripta 20, 306.CrossRefGoogle Scholar
Smith, R. A., Krommes, J. A. & Lee, W. W. 1985 Phys. Fluids 28, 1089.Google Scholar
Su, X., Horton, W., Morrison, P. J. & Pavlenko, V. P. 1988 Report EFSR 328, The University of Texas at Austin.Google Scholar
Terry, P. W., Diamond, P. H. & Hahm, T. S. 1990 Phys. Fluids B 2, 2048.CrossRefGoogle Scholar