No CrossRef data available.
Published online by Cambridge University Press: 13 March 2009
The collisionless Vlasov–Poisson system in the drift approximation is examined for the existence of maximum-entropy nonlinear coherent solutions in the steady state. Two major nonlinear effects are taken into account. The first is the velocity-space trapping of particles, leading to closed trajectories in phase space. The second is the physical-space trapping of particles, leading to closed trajectories in the plane perpendicular to the magnetic field. The regions of validity of these nonlinearities are discussed and their relative importance demonstrated. Numerical solutions of the equations describing the nonlinear stationary states in one and two dimensions are presented.