Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-26T00:30:21.356Z Has data issue: false hasContentIssue false

Nonlinear dispersion relation for nonlinear Schrödinger equation

Published online by Cambridge University Press:  13 March 2009

J. C. Bhakta
Affiliation:
Department of Mathematics, University of Chittagong, Bangladesh

Abstract

By using the average-Lagrangian method (average variational principle), a nonlinear dispersion relation has been derived for the cubic nonlinear Schrödinger equation. It is found that the size of the instability region in wavenumber space decreases with increasing field amplitude in comparison with the linear theory.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ablowitz, M. J., Kaup, D. J., Newell, A. C. & Segur, H. 1974 Stud. Appl. Maths 53, 249.CrossRefGoogle Scholar
Buti, B. 1977 Phys. Rev. Lett. 38, 498.CrossRefGoogle Scholar
Infeld, E. 1981 Phys. Rev. Lett. 47, 717.CrossRefGoogle Scholar
Janssen, P. A. E. 1981 Phys. Fluids 24, 23.CrossRefGoogle Scholar
Kano, M. 1974 Suppl. Prog. Theor. Phys. 55, 80.CrossRefGoogle Scholar
Rowlands, G. 1980 J. Phys. A13, 2395.Google Scholar
Thornhill, S. G. & Ter Haar, D. 1978 Phys. Rep. 43, 43.CrossRefGoogle Scholar
Washimi, H. 1974 Suppl. Prog. Theor. Phys. 55, 138.CrossRefGoogle Scholar
Whitham, G. B. 1974 Linear and Non-Linear Waves. Wiley-Interscience.Google Scholar
Yuen, H. C. & Ferguson, W. E. 1978 Phys. Fluids 21, 1275.CrossRefGoogle Scholar
Zakharov, V. E. & Shabat, A. B. 1972 Soviet Phys. JETP 34, 908.Google Scholar