Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-24T01:54:55.705Z Has data issue: false hasContentIssue false

Nonlinear coupling of two three-wave systems in plasma

Published online by Cambridge University Press:  13 March 2009

Shukla Basu (De)
Affiliation:
Electronics Unit, Indian Statistical Institute, Calcutta – 700 035
R. K. Roychowdhury
Affiliation:
Electronics Unit, Indian Statistical Institute, Calcutta – 700 035

Abstract

The nonlinear interaction of two three-wave systems, including the possibility of negative energy waves in the presence of linear damping or growth and frequency mismatch, is investigated in a plasma, where one system of two transverse and one longitudinal wave interacts with a system of three longitudinal waves, and one of the longitudinal waves introduces coupling between the two subsystems. The solutions are analysed under various initial conditions and it is shown that, if one triplet be explosively unstable by itself, the presence of the second triplet can stabilize the solutions, depending on the relative strength of the coupling factor.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1983

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bonnedal, M. & Wilhelmsson, H. 1974 J. Plasma Phys. 12, 81.CrossRefGoogle Scholar
Boyd, T. J. M. & Turner, J. G. 1978 J. Math. Phys. 19, 1403.CrossRefGoogle Scholar
Bullough, R. K. 1977 Nonlinear Equations in Physics and Mathematics (ed. Barut, A. O.), p. 99. Reidel.Google Scholar
Byrd, F. P. & Friedman, D. M. 1954 Handbook of Elliptic Integrals for Engineers and Physicists. Springer.CrossRefGoogle Scholar
Coffey, T. P. & Ford, G. W. 1969 J. Math. Phys. 10, 998.CrossRefGoogle Scholar
Coppi, B., Rosenbluth, M. N. & Sudan, R. N. 1969 Ann. Phys. 55, 207.CrossRefGoogle Scholar
Davidson, R. C. 1972 Methods in Nonlinear Plasma Theory. Academic.Google Scholar
De, S., Khan, T. P. & Roychowdhury, R. K. 1981 J. Phys. A, 14, 1789.CrossRefGoogle Scholar
Fuchs, V. 1975 J. Math. Phys. 16, 1388.CrossRefGoogle Scholar
Inoue, Y. 1975 J. Phys. Soc. Japan, 39, 1092.CrossRefGoogle Scholar
Karplyuk, K. S., Oraevskii, N. Y. & Pavlenko, V. P. 1973 Plasma Phys. 15, 113.CrossRefGoogle Scholar
Khan, T. P., De, S., Roychowdhury, R. K. & Roy, T. 1980 J. Phys. A, 13, 1443.Google Scholar
Menyuk, C. R., Chen, H. H. & Lee, Y. C. 1983 Phys. Rev. A 27, 1597.CrossRefGoogle Scholar
Stenflo, L. 1970 Plasma Phys. 12, 509.CrossRefGoogle Scholar
Tsytovich, V. N. 1967 Soviet Phys. JETP, 24, 937.Google Scholar
Walters, D. & Lewak, J. G. 1977 J. Plasma Phys. 18, 525.CrossRefGoogle Scholar
Weiland, J. & Wilhelmsson, H. 1977 Coherent Nonlinear Interaction of Waves in Plasmas. Pergamon.Google Scholar
Wilhelmsson, H. 1969 J. Plasma Phys. 3, 215.CrossRefGoogle Scholar
Wilhelmsson, H. & Pavlenko, V. P. 1973 Physica Scripta, 7, 213.CrossRefGoogle Scholar
Wilhelmsson, H. & Stenflo, L. 1970 J. Math. Phys. 11, 1738.CrossRefGoogle Scholar