Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-12T11:13:14.313Z Has data issue: false hasContentIssue false

Nonlinear Alfvén waves in a finite-beta plasma

Published online by Cambridge University Press:  13 March 2009

Einar Mjølhus
Affiliation:
Institute of Mathematical and Physical Sciences, University of Tromsø, P.O. Box 953, N-9001 Tromsø, Norway
John Wyller
Affiliation:
Department of Mathematics, University of Luleå, S-95187 Luleå, Sweden

Abstract

The DNLS equation for parallel nonlinear and weakly dispersive MHD waves is extended to finite beta values as well as to three spatial dimensions, by means of the reductive perturbation method. Kinetic effects are included by means of the hybrid fluid and kinetic guiding-centre model of Grad (1961). The resulting equation contains a nonlinear and non-local term representing the effect of resonant particles.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Braginskii, S. I. 1965 Reviews of Plasma Physics, vol. 1 (ed. Leontovich, M. A.), p. 205. Consultants Bureau.Google Scholar
Cohen, R. H. & Kulsrud, R. M. 1974 Phys. Fluids, 17, 2215.CrossRefGoogle Scholar
Dawson, S. P. & Fontán, C. F. 1988 Phys. Fluids, 31, 83.CrossRefGoogle Scholar
Dysthe, K. B. & Pecseli, H. L. 1977 Plasma Phys. 19, 931.CrossRefGoogle Scholar
Gardner, C. S. & Morikawa, G. K. 1960 Report NYO-9082, Courant Institute of Mathematical Sciences, New York University.Google Scholar
Grad, H. 1961 Proceedings of the Symposium on Electromagnetics and, Fluid Dynamics of Gaseous Plasmas, p. 37. Polytechnic Press of the Polytechnic Institute of Brooklyn, New York.Google Scholar
Grad, H. 1966 Phys. Fluids, 9, 225.CrossRefGoogle Scholar
Hasegawa, A. 1972 Phys. Fluids, 15, 870.CrossRefGoogle Scholar
Hollweg, J. V. 1971 Phys. Rev. Lett. 27, 1349.CrossRefGoogle Scholar
Ichikawa, Y. H. & Taniuti, T. 1973 J. Phys. Soc. Jpn, 34, 513.CrossRefGoogle Scholar
Ichikawa, Y. H. & Watanabe, S. 1977 J. Phys. (Paris) Suppl. 12, C6–15.Google Scholar
Jones, D. S. 1966 Generalized Functions. McGraw-Hill, London.Google Scholar
Kakutani, T. & Ono, H. 1969 J. Phys. Soc. Jpn, 26, 1305.CrossRefGoogle Scholar
Karpman, V. I. & Maslov, E. M. 1977 Soviet Phys. JETP, 46, 281.Google Scholar
Kaup, D. 1976 Siam J. Appl. Maths, 31, 121.CrossRefGoogle Scholar
Kaup, D. & Newell, A. 1978 J. Math. Phys. 19, 798.CrossRefGoogle Scholar
Kawata, T., Sakai, J.-I. & Kobayashi, N. 1980 J. Phys. Soc. Jpn, 48, 1371.CrossRefGoogle Scholar
Kever, H. & Morikawa, G. K. 1969 Phys. Fluids, 12, 2090.CrossRefGoogle Scholar
Khanna, M. & Rajaram, R. 1982 J. Plasma Phys. 28, 459.CrossRefGoogle Scholar
Lee, M. A. & Völk, H. J. 1973 Astrophys. Space Sci. 24, 31.CrossRefGoogle Scholar
Machida, S., Spangler, S. R. & Goertz, C. K. 1987 J. Geophys. Res. 92, 7413.CrossRefGoogle Scholar
Mio, K., Ogino, T., Minami, T. & Takeda, S. 1976 J. Phys. Soc. Jpn, 41, 265.CrossRefGoogle Scholar
Mjølhus, E. 1974 Report 48, Dept Applied Mathematics, University of Bergen.Google Scholar
Mjølhus, E. 1976 J. Plasma Phys. 16, 321.CrossRefGoogle Scholar
Mjølhus, E. 1978 J. Plasma Phys. 19, 437.CrossRefGoogle Scholar
Mjølhus, E. & Wyller, J. 1986 Physica Scripta, 33, 442.CrossRefGoogle Scholar
Morikawa, G. K. 1957 Commun. Pure Appl. Maths, 10, 291.CrossRefGoogle Scholar
Morton, K. W. 1964 Phys. Fluids, 7, 1800.CrossRefGoogle Scholar
Ovenden, C. R., Shah, H. A. & Schwarz, S. J. 1983 J. Geophys. Res. 88, 6095.CrossRefGoogle Scholar
Rogister, A. 1971 Phys. Fluids, 14, 2733.CrossRefGoogle Scholar
Sakai, J.-J. & Sonnerup, B. Ø. U. 1983 J. Geophys. Res. 88, 9069.CrossRefGoogle Scholar
Spangler, S. R. 1985 Astrophys. J. 299, 122.CrossRefGoogle Scholar
Spangler, S. R. & Sheerin, J. P. 1982 J. Plasma Phys. 27, 193.CrossRefGoogle Scholar
Spangler, S. R. & Sheerin, J. P. 1983 Astrophys. J. 272, 273.CrossRefGoogle Scholar
Taniuti, T. & Nishihara, K. 1983 Nonlinear Waves. Pitman, London.Google Scholar
Taniuti, T. & Washimi, H. 1968 Phys. Rev. Lett. 21, 209.CrossRefGoogle Scholar
Taniuti, T. & Wei, C.-C. 1968 J. Phys. Soc. Jpn, 24, 941.CrossRefGoogle Scholar
Taniuti, T. & Yajima, N. 1969 J. Math. Phys. 10, 1369.CrossRefGoogle Scholar
Wyller, J. & Mjølhus, E. 1984 Physica 13D, 234.Google Scholar
Yajima, N. 1966 Prog. Theor. Phys. 37, 1.CrossRefGoogle Scholar