Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-25T05:06:09.013Z Has data issue: false hasContentIssue false

A new Hamiltonian formulation for fluids and plasmas. Part 2. MHD models

Published online by Cambridge University Press:  13 March 2009

Jonas Larsson
Affiliation:
Department of Plasma Physics, Umeå University, S-90187 Umeå, Swedent† and Lawrence Berkeley Laboratory, University of California, California 94720, U.S.A.

Abstract

The new Hamiltonian formulation of the perfect fluid equations presented in part 1 of this series of papers is generalized to a class of IVIHD models, including for example ideal MHD and the Chew–Goldberger–Low equations. The mathematical structure is to a great extent unchanged by this generalization, and most results about the small-amplitude expansion of the perfect fluid equations remain obviously valid. For example, we now have a rigorous proof of the Manley-Rowe relations in resonant three-wave interaction, valid for this class of MHD models and for quite general inhomogeneous but stationary background states, including equilibrium flows.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Brizard, A. J. 1992 Phys. Lett. 168A, 357.Google Scholar
Brodin, G. & Stenflo, L. 1988 J. Plasma Phys. 39, 277.Google Scholar
Brodin, G. & Stenflo, L. 1989 J. Plasma Phys. 41, 199.CrossRefGoogle Scholar
Chew, C. F., Goldberger, M. L. & Low, F. E. 1956 Proc. R. Soc. Lond. A236, 112.Google Scholar
Chin, Y. C. & Wentzel, D. G. 1972 Astrophys. Space Sci. 16, 465.CrossRefGoogle Scholar
Choquet-Bruhat, Y. & Dewitt-Morette, C. with Dillard-Bleick, M. 1982 Analysis, Manifolds and Physics, 2nd edn.North-Holland, Amsterdam.Google Scholar
Duhau, S. & Gratton, J. 1975 J. Plasma Phys. 13, 451.Google Scholar
Dzyaloshinskii, I. E. & Volovick, G. E. 1980 Ann. Phys. (NY) 125, 67.Google Scholar
Freidberg, J. P. 1982 Rev. Mod. Phys. 54, 801.CrossRefGoogle Scholar
Karplyuk, K. S., Oraevskii, V. N. & Pavlenko, V P. 1973 Plasma Phys. 15, 113.Google Scholar
Larsson, J. 1991 Phys. Rev. Lett. 66, 1466.CrossRefGoogle Scholar
Larsson, J. J. 1992 J. Plasma Phys. 48, 13.CrossRefGoogle Scholar
Larsson, J. 1993 J. Plasma Phys. 49, 255.CrossRefGoogle Scholar
Larsson, J. 1996 J. Plasma Phys. 55, 235.CrossRefGoogle Scholar
Lundgern, T. S. 1963 Phys. Fluids 6, 898.Google Scholar
Morrison, P. J. & Greene, J. M. 1980 Phys. Rev. Lett. 45, 790.CrossRefGoogle Scholar
Morrison, P. J. & Greene, J. M. 1982 Phys. Rev. Lett. 48, 569.Google Scholar
Newcomb, W. A. 1962 Nucl. Fusion Suppl., Part 2, 451.Google Scholar
Penfield, P. & Haus, H. 1966 Phys. Fluids 9, 1195.Google Scholar
Sagdeev, R. Z. & Galeev, A. A. 1969 Nonlinear Plasma Theory. Benjamin, New York.Google Scholar
Salmon, R. 1988 Hamiltonian fluid mechanics. Ann. Rev. Fluid Mech. 20, 225.CrossRefGoogle Scholar
Shi, Y., Lee, L. C. & Fu, Z. F. 1987 J. Geophys. Res. 92, 12171.Google Scholar
Shukla, P. K., Yu, M. Y., Rahman, H. U. & Spatschek, K. H. 1984 Phys. Rep. 105, 227.Google Scholar