Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-12T14:53:42.687Z Has data issue: false hasContentIssue false

New, almost electrostatic, temperature anisotropy instability

Published online by Cambridge University Press:  13 March 2009

Ronald W. Landau
Affiliation:
Department of Physics and Astronomy, Tel-Aviv University, Ramat Aviv, Israel

Extract

A new, purely growing instability has been found for a bi-Maxwellian plasma in a uniform magnetic field. Instability exists for β;11 = 4βnkT11/B2 > O.591 when Tboxhu;= 0, and ions are neglected. The growth rate is near the electron gyro frequency (or v/c the plasma frequency), and the polarization is almost electrostatic for almost perpendicular propagation. The instability is obtainable only from the complete dispersion relation.

Type
Articles
Copyright
Copyright © Cambridge University Press 1975

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Artsimovich, L. A. 1972 Nuclear Fusion, 12, 215.CrossRefGoogle Scholar
Barberio-Corsetti, P. 1970 Princeton University MATT 773.Google Scholar
Bornatici, M. & Lee, K. F. 1970 Phys. Fluids, 13, 3007.CrossRefGoogle Scholar
Cohen, M. H., Gundermann, E. J., Hardebeck, H. E. & Sharp, L. E. 1967 Astrophys. J. 147, 449.CrossRefGoogle Scholar
Davidson, R., Hammer, D. A., Haber, I. & Wagner, C. F. 1972 Phys. Fluids, 15, 317.CrossRefGoogle Scholar
Forslund, D. W. 1972 Solar Wind (ed. Sonett, C. P., Coleman, P. J. and Wilcox, J. M.), p. 349. Washington, D.C.: NASA.Google Scholar
Fried, B. D. & Conte, S. D. 1961 The Plasma Dispersion Function. Academic.Google Scholar
Hamasaki, S. 1968 a Phys. Fluids, 11, 1173.CrossRefGoogle Scholar
Hamasaki, S. 1968 b Phys. Fluids, 11, 2724.CrossRefGoogle Scholar
Hewish, A. 1972 Solar Wind (ed. Sonett, C. P., Coleman, P. J. and Wilcox, J. M.), p. 483. Washington, D.C.: NASA.Google Scholar
Hewish, A. & Symonds, M. D. 1969 Planet Space Sci. 17, 313.CrossRefGoogle Scholar
Hundhausen, A. J. 1972 Coronal Expansion and Solar Wind. Springer.CrossRefGoogle Scholar
Kahn, F. D. 1964 J. Fluid Mech. 19, 210.CrossRefGoogle Scholar
Kalman, G., Montes, C. & Quemada, D. 1968 Phys. Fluids, 11, 1797.CrossRefGoogle Scholar
Kennel, C. F. & Scarf, F. L. 1968 J. Geophys. Res. 73, 6149.CrossRefGoogle Scholar
Landau, R. W. & Cuperman, S. 1970 J. Plasma Phys. 4, 13.CrossRefGoogle Scholar
Landau, R. W. & Cuperman, S. 1971 J. Plasma Phys. 6, 495.CrossRefGoogle Scholar
Landau, R. W. & Cuperman, S. 1973 J. Plasma Phys. 9, 143.CrossRefGoogle Scholar
Lee, R. & Lampe, M. 1973 Phys. Rev. Letters, 31, 1390.CrossRefGoogle Scholar
Rosenbluth, M. N. 1964 Advanced Plasma Theory (ed. Rosenbluth, M. N.), p. 143. Academic.Google Scholar
Rostoker, N. 1966 Plasma Physics in Theory and Application (ed. Kimkel, W.). McGraw- Hill.Google Scholar
Shima, Y. & Hall, L. S. 1965 Phys. Rev. 139, A 1115.CrossRefGoogle Scholar
Stix, T. H. 1962 Theory of Plasma Waves. McGraw-Hill.Google Scholar
Taylor, J. B. 1972 Proc. 5th European Conf. on Controlled Fusion and Plasma Phys., vol. 2, p. 83. Centre d'Etudes Nucléaires do Grenoble.Google Scholar
Weibel, E. S. 1959 Phys. Rev. Letters, 2, 83.CrossRefGoogle Scholar