Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-26T00:29:23.207Z Has data issue: false hasContentIssue false

Net inverse-bremsstrahlung (NIB) acceleration of a high-energy electron beam in an axial electrostatic wave

Published online by Cambridge University Press:  13 March 2009

S. H. Kim
Affiliation:
Department of Physics, University of Texas at Arlington, P.O. Box 19059, Arlington, Texas 76019, U.S.A.

Abstract

It is shown that stimulated emission is an intrinsically incoherent-phase phenomenon arising from the uncertainty principle, and that therefore the laser gain cannot be described by any classical model, which must be coherent in all aspects. The force due to the net inverse-bremsstrahlung (‘NIB force’) acting on a high-energy electron beam travelling in an undulating field whose wave vector is collinear with the electron beam (‘collinear wiggler’) is found by extending the quantum kinetic theory of the free-electron laser. In the case that an axial electrostatic wave is used as the catalysing field for the net multi- photon inverse bremsstrahlung, it is shown that NIB acceleration is practical only when the potential amplitude (in terms of the electron energy) of the laser wave, [eA0], is comparable to or larger than the electron rest energy mc2.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abramowitz, M. & Stegun, I. A. 1965 Handbook of Mathematical Functions, p. 366. Dover.Google Scholar
Akama, H. & Nambu, M. 1982 Phys. Lett. 116 A, 155.Google Scholar
Elias, L. R., Fairbank, W. M., Madey, J. M. J., Schwettmann, H. A. & Smith, T. I. 1976 Phys. Rev. Lelt. 36, 717.Google Scholar
Fedorov, M. V. 1981 Prog. Quantum. Electron. 7, 73.Google Scholar
Fedorov, M. V. & Mciver, J. K. 1979 Pis'ma Zh. Tech. Fiz. 5, 607.Google Scholar
Feynman, R. P. 1962 Quantum Electrodynamics, p. 4. Benjamin.Google Scholar
Hopf, F. A., Meystre, P., Scully, M. O. & Louisell, W. H. 1976 Phys. Rev. Lett. 37, 1215.Google Scholar
Hopf, F. A., Kuper, T. G., Moore, G. T. & Scully, M. O. 1980 Free-Electron Generators of Coherent Radiation (ed. Jacobs, S. F., Pilloff, H. S., Sargent, M., Scully, M. O. & Spitzer, R.), vol. 7, p. 31. Addison-Wesley.Google Scholar
Hora, H. 1969 Phys. Fluids 12, 182.CrossRefGoogle Scholar
Kim, S. H. 1984 Phys. Fluids 27, 675.Google Scholar
Kim, S. H. 1985 Lett. Nuovo Cim 44, 467.CrossRefGoogle Scholar
Kim, S. H. 1986 J.Plasma Phys 36, 195 [corrigendum, 41, 577 (1989)].CrossRefGoogle Scholar
Kim, S. H. 1988 Phys. Lett 129 A, 386.Google Scholar
Kim, S. H. 1989 a Phys. Lett 135 A, 39.Google Scholar
Kim, S. H. 1989 b Phys. Lett 135 A, 44.Google Scholar
Kim, S. H. 1989 c Phys. Lett 135 A, 48.Google Scholar
Kim, S. H. 1991 a Intense Microwave and Particle Beams II (ed. Brandt, H. B.). SPIE vol. 1407, p. 620. SPIE–The International Society for Optical Engineering.Google Scholar
Kim, S. H. 1991 b Nuovo Cim. 106 B, 325.Google Scholar
Kim, S. H. 1992 J. Phys. Soc. Japan 61, 131.Google Scholar
Kim, S. H. 1992 J. Plasma Phys. 47, 197.Google Scholar
Kim, S. H. 1992 J. Plasma Phys. 47, 219.Google Scholar
Kim, S. H. 1992 d J. Plasma Phys. 47, 505.Google Scholar
Kim, S. H. 1992 e Nuovo Cim. 107 B, 605.Google Scholar
Kim, S. H. 1992 f J. Korean Phys. Soc. 25, 206.Google Scholar
Kim, S. H. 1992 g J. Plasma Phys 48, 261.Google Scholar
Kim, S. H. 1992 h J. Phys. Soc. Japan 62, 1.Google Scholar
Kroll, N. M. & McMullin, W. A. 1978 Phys. Rev. A 17, 300.Google Scholar
Madey, J. M. J. 1971 J. Appl. Phys 42, 1906.Google Scholar
Nambu, M. 1983 Laser and Particle Beanis 1, 427.CrossRefGoogle Scholar
Orzechowski, T. J., Anderson, B. R., Clark, J. C., Fawley, W. M., Paul, A. C., Prosnitz, D., Sharlemann, E. T., Yarema, S. M., Hopkins, D. B., Sessler, A. M. & Wurtele, J. S. 1986 Phys. Rev. Lett. 57, 2172.Google Scholar
Pantell, R. H., Soncini, G. & Putoff, H. E. 1968 IEEE J. Quantum Electron. 4, 905.Google Scholar
Pena, L. 1982 Stochastic Processes Applied to Physics and Other Related Fields (ed. , B. Gomez, S. M. Moore, A. M. Rodriguez-Vargas, A. Rueda), p. 428. World Scientific.Google Scholar
Roberson, C. W.&Sprangle, P. 1989 Phys. Fluids B 1, 3.Google Scholar
Sakurai, J.J. 1980 Advanced Quantum Mechanics. Addison-Wesley.Google Scholar
Volkov, D. M. 1935 Z. Phys. 94, 250.Google Scholar