Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-29T04:55:47.121Z Has data issue: false hasContentIssue false

Multi-symplectic magnetohydrodynamics: II, addendum and erratum

Published online by Cambridge University Press:  09 December 2015

G. M. Webb*
Affiliation:
Center for Space Plasma and Aeronomic Research, The University of Alabama in Huntsville, Huntsville, AL 35805, USA
J. F. McKenzie
Affiliation:
Center for Space Plasma and Aeronomic Research, The University of Alabama in Huntsville, Huntsville, AL 35805, USA Department of Mathematics and Statistics, Durban University of Technology, Steve Biko Campus, Durban, 4001, South Africa School of Mathematical Sciences, University of KwaZulu-Natal, Durban, 4000, South Africa
G. P. Zank
Affiliation:
Center for Space Plasma and Aeronomic Research, The University of Alabama in Huntsville, Huntsville, AL 35805, USA Department of Space Science, The University of Alabama in Huntsville, Huntsville, AL 35805, USA
*
Email address for correspondence: [email protected]

Abstract

A recent paper by Webb et al. (J. Plasma Phys., vol. 80, 2014, pp. 707–743) on multi-symplectic magnetohydrodynamics (MHD) using Clebsch variables in an Eulerian action principle with constraints is further extended. We relate a class of symplecticity conservation laws to a vorticity conservation law, and provide a corrected form of the Cartan–Poincaré differential form formulation of the system. We also correct some typographical errors (omissions) in Webb et al. (J. Plasma Phys., vol. 80, 2014, pp. 707–743). We show that the vorticity–symplecticity conservation law, that arises as a compatibility condition on the system, expressed in terms of the Clebsch variables is equivalent to taking the curl of the conservation form of the MHD momentum equation. We use the Cartan–Poincaré form to obtain a class of differential forms that represent the system using Cartan’s geometric theory of partial differential equations

Type
Research Article
Copyright
© Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Boillat, G. 1970 Simple waves in $N$ -dimensional propagation. J. Math. Phys. 11, 14821483.Google Scholar
Bridges, T. J. 1992 Spatial Hamiltonian structure, energy flux and the water-wave problem. Proc. R. Soc. Lond. 439, 297315.Google Scholar
Bridges, T. J. 1997a Multi-symplectic structures and wave propagation. Math. Proc. Camb. Phil. Soc. 121, 147190.CrossRefGoogle Scholar
Bridges, T. J. 1997b A geometric formulation of the conservation of wave action and its implications for signature and classification of instabilities. Proc. R. Soc. Lond. A 453, 13651395.Google Scholar
Bridges, T. J. 2006 Canonical multi-symplectic structure on the total exterior algebra bundle. Proc. R. Soc. Lond. A 462, 15311551.Google Scholar
Bridges, T. J., Hydon, P. E. & Lawson, J. K. 2010 Multi-symplectic structures and the variational bi-complex. Math. Proc. Camb. Phil. Soc. (1), 159178.Google Scholar
Bridges, T. J., Hydon, P. E. & Reich, S. 2005 Vorticity and symplecticity in Lagrangian fluid dynamics. J. Phys. A: Math. Gen. 38, 14031418.Google Scholar
Bridges, T. J. & Reich, S. 2006 Numerical methods for Hamiltonian PDEs. J. Phys. A: Math. Gen. 39, 52875320.Google Scholar
Cendra, H. & Capriotti, S.2013 Cartan algorithm and Dirac constraints for Griffiths variational problems, available at arXiv:1309.4080v1.Google Scholar
Chandre, C., de Guillebon, L., Back, A., Tassi, E. & Morrison, P. J. 2013 On the use of projectors for Hamiltonian systems and their relationship with Dirac brackets. J. Phys. A: Math. Theoret. 46, 125203,1–14.Google Scholar
Cotter, C. J., Holm, D. D. & Hydon, P. E. 2007 Multi-symplectic formulation of fluid dynamics using the inverse map. Proc. R. Soc. Lond. A 463, 26172687.Google Scholar
Grundland, A. M. & Picard, P. 2004 On conditionally invariant solutions of magnetohydrodynamic equations multiple waves. J. Nonlinear Math. Phys. 11 (1), 4774.Google Scholar
Harrison, B. K. & Estabrook, F. B. 1971 Geometric approach to invariance groups and solution of partial differential systems. J. Math. Phys. 12, 653666.Google Scholar
Holm, D. D. & Kupershmidt, B. A. 1983a Poisson brackets and Clebsch representations for magnetohydrodynamics, multi-fluid plasmas and elasticity. Physica D 6D, 347363.Google Scholar
Holm, D. D. & Kupershmidt, B. A. 1983b Noncanonical Hamiltonian formulation of ideal magnetohydrodynamics. Physica D 7D, 330333.Google Scholar
Holm, D. D., Marsden, J. E. & Ratiu, T. S. 1998 The Euler–Lagrange equations and semi-products with application to continuum theories. Adv. Maths 137, 181.CrossRefGoogle Scholar
Hydon, P. E. 2005 Multi-symplectic conservation laws for differential and differential-difference equations. Proc. R. Soc. Lond. A 461, 16271637.Google Scholar
Marsden, J. E. & Shkoller, S. 1999 Multi-symplectic geometry, covariant Hamiltonians and water waves. Math. Proc. Camb. Phil. Soc. 125, 553575.Google Scholar
Morrison, P. J. 1982 Poisson brackets for fluids and plasmas. In Mathematical Methods in Hydrodynamics and Integrability of dynamical Systems (ed. Tabor, M. & Treve, Y. M.), AIP Proc. Conf., 88, pp. 1346. American Institute of Physics.Google Scholar
Morrison, P. J. & Greene, J. M. 1980 Noncanonical Hamiltonian density formulation of hydrodynamics and ideal magnetohydrodynamics. Phys. Rev. Lett. 45, 790794.Google Scholar
Morrison, P. J. & Greene, J. M. 1982 Noncanonical Hamiltonian density formulation of hydrodynamics and ideal magnetohydrodynamics. Phys. Rev. Lett. 48, 569 (Errata).Google Scholar
Tur, A. V. & Yanovsky, V. V. 1993 Invariants in dissipationless hydrodynamic media. J. Fluid Mech. 248, 67106; Cambridge University Press.Google Scholar
Webb, G. M. 2015 Multi-symplectic, Lagrangian, one-dimensional gas dynamics. J. Math. Phys. 56, 053101,1–20.Google Scholar
Webb, G. M. & Anco, S. C. 2015 Vorticity and symplecticity in multi-symplectic, Lagrangian gas dynamics. J. Phys. A: Math. Theoret. (submitted).Google Scholar
Webb, G. M., Burrows, R. H., Ao, X. & Zank, G. P. 2014d Ion acoustic travelling waves. Part 2. J. Plasma Phys. 80, 147171.Google Scholar
Webb, G. M., Dasgupta, B., McKenzie, J. F., Hu, Q. & Zank, G. P. 2014a Local and nonlocal advected invariants and helicities in magnetohydrodynamics and gas dynamics I: Lie dragging approach. J. Phys. A.: Math. Theoret. 47, 095501,1–33.Google Scholar
Webb, G. M., Dasgupta, B., McKenzie, J. F., Hu, Q. & Zank, G. P. 2014b Local and nonlocal advected invariants and helicities in magnetohydrodynamics and gas dynamics II: Noether’s theorems and Casimirs. J. Phys. A.: Math. Theoret. 47, 095502,1–31.Google Scholar
Webb, G. M., Hu, Q., Dasgupta, B., Roberts, D. A. & Zank, G. P. 2010 Alfvén simple waves: Euler potentials and magnetic helicity. Astrophys. J. 725, 21282151.Google Scholar
Webb, G. M., Hu, Q., Dasgupta, B. & Zank, G. P. 2012 Double Alfvén waves. Part 1. J. Plasma Phys. 78, 7185.CrossRefGoogle Scholar
Webb, G. M., Ko, C. M., Mace, R. L., McKenzie, J. F. & Zank, G. P. 2008 Integrable, oblique travelling waves in charge neutral, two-fluid plasmas. Nonlinear Process Geophys. 15, 179208.CrossRefGoogle Scholar
Webb, G. M., McKenzie, J. F., Mace, R. L., Ko, C. M. & Zank, G. P. 2007 Dual variational principles for nonlinear traveling waves in multifluid plasmas. Phys. Plasmas 4 (8), 082318,1–17.Google Scholar
Webb, G. M., McKenzie, J. F. & Zank, G. P. 2014c Multisymplectic magnetohydrodynamics. Part 5. J. Plasma Phys. 80, 707743.Google Scholar
Webb, G. M., Ratkiewicz, R., Brio, M. & Zank, G. P. 1996 Multi-dimensional MHD simple waves. In Solar Wind (ed. Winterhalter, D., Gosling, J. T., Habbal, S. R., Kurth, W. S. & Neugebauer, M.), AIP Proc. Conf., 382, vol. 8, pp. 335338. American Institute of Physics.Google Scholar
Webb, G. M., Zank, G. P., Burrows, R. H. & Ratkiewicz, R. E. 2011 Simple Alfvén waves. Part 1. J. Plasma Phys. 77, 5193.Google Scholar
Zakharov, V. E. & Kuznetsov, E. A. 1997 Hamiltonian formalism for nonlinear waves. Phys. Uspekhi 40 (11), 10871116.Google Scholar