Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-26T18:13:57.142Z Has data issue: false hasContentIssue false

Motion of a single charged particle in electromagnetic fields with cyclotron resonances

Published online by Cambridge University Press:  13 March 2009

Boris Weyssow
Affiliation:
Physique Statistique, Plasmas et Optique Nonlinéaire, Faculté des Sciences, Université Libre de Bruxelles, CP 231 Campus Plaine, 1050 Bruxelles, Belgium

Abstract

The general Hamiltonian-averaging transformation developed to study the motion of a charged particle in a strong magnetic field and various electromagnetic perturbations permits a clear definition of the dynamics of the guiding centre. In the case of a high-frequency electromagnetic perturbation, the equations of evolution of the phase-space co-ordinates are sums of guiding-centre terms, resonant terms at any of the cyclotron resonance frequencies n(rk–ω)+lΩ≈0(l and n are integers) and ponderomotive terms. In this paper we consider the n = 1 resonances giving a contribution one order stronger than the ponderomotive terms to the equations of motion. The guiding-centre transformation therefore suffices to derive the leading terms of the averaged dynamics. A simple case of isolated resonance is then considered for which, depending on the value of the external parameters (initial particle energy, amplitude of the perturbation), the phase space may possess one or two trapping regions. Even in the latter situation, the particle trajectories can be described analytically by the set of 12 Jacobian elliptic functions.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adam, J. 1987 Plasma Phys. Contr. Fusion, 29, 443.CrossRefGoogle Scholar
Abramowitz, M. & Stegun, I. A. 1970 Handbook of Mathematical Functions. Dover.Google Scholar
Balescu, R. 1988 Transport Processes in Plasmas. North-Holland.Google Scholar
Bernstein, I. B. 1975 Phys. Fluids, 18, 320.CrossRefGoogle Scholar
Bogoliubov, N. N. & Mitropolski, T. A. 1962 Asymptotic Methods in Nonlinear Oscillations. Gordon & Breach.Google Scholar
Brambilla, M. & Cardinali, A. 1982 Plasma Phys. 24, 1187.CrossRefGoogle Scholar
Chirikov, B. V. 1979 Phys. Rep. 52, 265.CrossRefGoogle Scholar
Dendy, R. O. 1987 Phys. Fluids, 30, 2438.CrossRefGoogle Scholar
Fukuyama, A., Mamota, H. & Itatani, R. 1976 Proceedings of 3rd Symposium on Plasma Heating in Toroidal Devices (ed. Sindoni). Editrice Compositori, Bologna.Google Scholar
Gell, Y. & Nakach, R. 1980 Phys. Fluids, 23, 1646.CrossRefGoogle Scholar
Gradshteyn, I. S. & Ryzhik, I. M. 1965 Table of Integrals, Series and Products. Academic.Google Scholar
Karney, C. F. F. & Bers, A. 1977 Phys. Rev. Lett. 39, 550.CrossRefGoogle Scholar
Kitsenko, A. B. & Pankratov, I. M. 1984 Soviet J. Plasma Phys. 10, 250.Google Scholar
Kitsenko, A. B., Pankratov, I. M. & Stepanov, K. N. 1974 Soviet Phys. JETP 39, 77.Google Scholar
Kitsenko, A. B., Pankratov, I. M. & Stepanov, K. N. 1975 Soviet Phys. JETP, 40, 860.Google Scholar
Kruskal, M. D. 1962 J. Math. Phys. 3, 806.CrossRefGoogle Scholar
Lashmore-Davies, C. N. & Dendy, R. O. 1989 Phys. Rev. Lett. 62, 1982.CrossRefGoogle Scholar
Lichtenberg, A. J. & Lieberman, M. A. 1983 Regular and Stochastic Motion. Springer.CrossRefGoogle Scholar
Littlejohn, R. G. 1979 J. Math. Phys. 20, 2445.CrossRefGoogle Scholar
Littlejohn, R. G. 1981 Phys. Fluids, 24, 1730.CrossRefGoogle Scholar
Littlejohn, R. G. 1983 J. Plasma Phys. 29, 111.CrossRefGoogle Scholar
Palmadesso, P. J. 1973 Phys. Fluids, 15, 2006.CrossRefGoogle Scholar
Pocobelli, G. 1981 Phys. Fluids, 24, 2173.CrossRefGoogle Scholar
Sagdeev, R. Z. & Zaslavskii, G. M. 1986 Nonlinear Phenomena in Plasma Physics and Hydrodynamics. MTR.Google Scholar
Smith, G. R. & Kaufman, A. N. 1978 Phys. Fluids, 21, 2230.CrossRefGoogle Scholar
Weyssow, B. & Balescu, R. 1986 J. Plasma Phys. 35, 449.CrossRefGoogle Scholar
Weyssow, B. & Balescu, R. 1987 J. Plasma Phys. 37, 467.CrossRefGoogle Scholar
Weyssow, B. & Balescu, R. 1988 J. Plasma Phys. 39, 81.CrossRefGoogle Scholar
Weyssow, B. 1990 Ph.D. thesis, Université Libre de Bruxelles.Google Scholar