Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-11T13:24:19.614Z Has data issue: false hasContentIssue false

Momentum transfer and plasma rotation caused by destabilized eigenmodes in tokamaks

Published online by Cambridge University Press:  26 October 2022

Ya.I. Kolesnichenko*
Affiliation:
Institute for Nuclear Research, Prospekt Nauky 47, Kyiv 03028, Ukraine
Hyun-Tae Kim
Affiliation:
United Kingdom Atomic Energy Authority, Culham Science Centre, Abingdon OX14 3DB, UK
V.V. Lutsenko
Affiliation:
Institute for Nuclear Research, Prospekt Nauky 47, Kyiv 03028, Ukraine
A.V. Tykhyy
Affiliation:
Institute for Nuclear Research, Prospekt Nauky 47, Kyiv 03028, Ukraine
R.B. White
Affiliation:
Princeton Plasma Physics Laboratory, Princeton, NJ 08543, USA
Yu.V. Yakovenko
Affiliation:
Institute for Nuclear Research, Prospekt Nauky 47, Kyiv 03028, Ukraine
*
Email address for correspondence: [email protected]

Abstract

The influence of magnetohydrodynamic eigenmodes destabilized by energetic ions on the momentum of these ions and concomitant sheared plasma rotation are studied. Two mechanisms affecting rotation are revealed: (i) spatial channelling (SC) – radially separated emission and absorption of the momentum; (ii) mode induced redistribution (MIR) across the magnetic field of the momentum of energetic ions. Forces arising during SC and MIR produce both toroidal and poloidal rotations. In addition, the momentum emission during SC leads to a radial flux of fast ions and generation of a radial electric field. Using the developed theory, estimates were made for the ITER (International Thermonuclear Experimental Reactor) 15 MA baseline scenario. They show that a global toroidicity-induced Alfvén eigenmode destabilized by alpha particles and neutral beam injection can result in significant radial electric field and forces applied to plasma. However, available data are not sufficient for a reliable prediction of the effects of SC and MIR in ITER. In general, one can expect that sheared rotation arising after destabilization of Alfvén modes and fast magnetoacoustic modes by energetic ions will tend to suppress the turbulence and improve plasma performance. The importance of plasma rotation is supported, in particular, by the fact that during the JET DTE1 experimental campaign the best parameters were achieved in a deuterium–tritium discharge where the rotation frequency was largest.

Type
Research Article
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Belikov, V.S. & Kolesnichenko, Ya.I. 1982 Derivation of the quasi-linear theory equations for the axisymmetric toroidal systems. Plasma Phys. 24 (1), 61.CrossRefGoogle Scholar
Belikov, V.S., Kolesnichenko, Ya.I. & Silivra, O.A. 1992 Destabilization of the shear Alfvén mode by alpha particles and other high energy ions. Nucl. Fusion 32 (8), 1399.CrossRefGoogle Scholar
Belova, E.V., Gorelenkov, N.N., Crocker, N.A., Lestz, J.B., Fredrickson, E.D., Tang, S. & Tritz, K. 2017 Nonlinear simulations of beam-driven compressional Alfvén eigenmodes in NSTX. Phys. Plasmas 24, 042505.CrossRefGoogle Scholar
Chen, L. & Zonca, F. 2016 Physics of Alfvén waves and energetic particles in burning plasmas. Rev. Mod. Phys. 88 (1), 015008.CrossRefGoogle Scholar
Ding, S., Garofalo, A.M., Knolker, M., Marinoni, A., McClenaghan, J. & Grierson, B.A. 2020 On the very high energy confinement observed in super H-mode DIII-D experiments. Nucl. Fusion 60 (3), 034001.CrossRefGoogle Scholar
Fukai, J. & Harris, E.G. 1971 Plasmons and the linear and nonlinear two-stream instabilities. Phys. Fluids 14 (8), 17481752.CrossRefGoogle Scholar
Gorelenkov, N.N., Pinches, S.D. & Toi, K. 2014 Energetic particle physics in fusion research in preparation for burning plasma experiments. Nucl. Fusion 54 (12), 125001.CrossRefGoogle Scholar
Gorelenkov, N.N., Stutman, D., Tritz, K., Boozer, A., Delgado-Aparicio, L., Fredrickson, E., Kaye, S. & White, R. 2010 Anomalous electron transport due to multiple high frequency beam ion driven Alfvén eigenmodes. Nucl. Fusion 50 (8), 084012.CrossRefGoogle Scholar
Green, B.J., ITER International Team & Participant Teams 2003 ITER: burning plasma physics experiment. Plasma Phys. Control. Fusion 45, 687706.CrossRefGoogle Scholar
Helander, P. & Sigmar, D.J. 2005 Collisional Transport in Magnetized Plasmas, vol. 4. Cambridge University Press.Google Scholar
Hinton, F.L. & Rosenbluth, M.N. 1999 Dynamics of axisymmetric and poloidal flows in tokamaks. Plasma Phys. Control. Fusion 41 (3A), A653A662.CrossRefGoogle Scholar
Hirshman, S.P. 1978 The ambipolarity paradox in toroidal diffusion, revisited. Nucl. Fusion 18 (7), 917.CrossRefGoogle Scholar
Ida, K. & Rice, J.E. 2014 Rotation and momentum transport in tokamaks and helical systems. Nucl. Fusion 54 (4), 045001.CrossRefGoogle Scholar
Kadomtsev, B.B. 1982 Collective Phenomena in Plasmas. Pergamon.Google Scholar
Kaufman, A.N. 1972 Quasilinear diffusion of an axisymmetric toroidal plasma. Phys. Fluids 15, 10631069.CrossRefGoogle Scholar
Kim, Hyun-Tae, Sips, A.C.C., Romanelli, M., Challis, C.D., Rimini, F., Garzotti, L., Lerche, E., Buchanan, J., Yuan, X., Kaye, S. & JET contributors . 2018 High fusion performance at high $T_i/T_e$ in JET-ILW baseline plasmas with high NBI heating power and low gas puffing. Nucl. Fusion 58 (3), 036020.CrossRefGoogle Scholar
Kolesnichenko, Ya.I. 1980 The role of alpha particles in tokamak reactors. Nucl. Fusion 20 (6), 727.CrossRefGoogle Scholar
Kolesnichenko, Ya.I., Könies, A., Lutsenko, V.V. & Yakovenko, Yu.V. 2011 Affinity and difference between energetic-ion-driven instabilities in 2D and 3D toroidal systems. Plasma Phys. Control. Fusion 53 (2), 024007.CrossRefGoogle Scholar
Kolesnichenko, Ya.I., Lutsenko, V.V., Tyshchenko, M.H., Weisen, H., Yakovenko, Yu.V. & JET contributors 2018 Analysis of possible improvement of the plasma performance in JET due to the inward spatial channelling of fast-ion energy. Nucl. Fusion 58 (7), 076012.CrossRefGoogle Scholar
Kolesnichenko, Ya.I., Lutsenko, V.V., Wobig, H. & Yakovenko, Yu.V. 2002 Alfvén instabilities driven by circulating ions in optimized stellarators and their possible consequences in a Helias reactor. Phys. Plasmas 9, 517.CrossRefGoogle Scholar
Kolesnichenko, Ya.I. & Tykhyy, A.V. 2018 Radial energy flux during destabilized Alfvén eigenmodes. Phys. Plasmas 25 (10), 102507.CrossRefGoogle Scholar
Kolesnichenko, Ya.I., Tykhyy, A.V. & White, R.B. 2020 Spatial channeling in toroidal plasmas: overview and new results. Nucl. Fusion 60 (11), 112006.CrossRefGoogle Scholar
Kolesnichenko, Ya.I., Yakovenko, Yu.V. & Lutsenko, V.V. 2010 a Channeling of the energy and momentum during energetic-ion-driven instabilities in fusion plasmas. Phys. Rev. Lett. 104, 075001.CrossRefGoogle ScholarPubMed
Kolesnichenko, Ya.I., Yakovenko, Yu.V., Lutsenko, V.V., Weller, A. & White, R.B. 2010 b Effects of energetic-ion-driven instabilities on plasma heating, transport and rotation in toroidal systems. Nucl. Fusion 50 (8), 084011.CrossRefGoogle Scholar
Kolesnichenko, Ya.I., Yamamoto, S., Yamazaki, K., Lutsenko, V.V., Nakajima, N., Narushima, Y., Toi, K. & Yakovenko, Yu.V. 2004 Interplay of energetic ions and Alfvén modes in helical plasmas. Phys. Plasmas 11, 158170.CrossRefGoogle Scholar
Morris, R.C., Haines, M.G. & Hastie, R.J. 1996 The neoclassical theory of poloidal flow damping in a tokamak. Phys. Plasmas 3, 45134520.CrossRefGoogle Scholar
Pinches, S.D., Chapman, I.T., Lauber, Ph.W., Oliver, H.J.C., Sharapov, S.E., Shinohara, K. & Tani, K. 2015 Energetic ions in ITER plasmas. Phys. Plasmas 22 (2), 021807.CrossRefGoogle Scholar
Rosenbluth, M.N. & Hinton, F.L. 1996 Plasma rotation driven by alpha particles in a tokamak reactor. Nucl. Fusion 36 (1), 5567.CrossRefGoogle Scholar
Sagdeev, R.Z. & Galeev, A.A. 1969 Nonlinear Plasma Theory. W.A. Benjamin, Inc.Google Scholar
Scott, S.D., Diamond, P.H., Fonck, R.J., Goldston, R.J., Howell, R.B., Jaehnig, K.P., Schilling, G., Synakowski, E.J., Zarnstorff, M.C., Bush, C.E., et al. 1990 Local measurements of correlated momentum and heat transport in the TFTR tokamak. Phys. Rev. Lett. 64 (5), 531534.CrossRefGoogle ScholarPubMed
Siena, A. di, Bilato, R., Görler, T., Navarro, A.B., Poli, E., Bobkov, V., Jarema, D., Fable, E., Angioni, C., Kazakov, Ye.O., et al. 2021 New high-confinement regime with fast ions in the core of fusion plasmas. Phys. Rev. Lett. 127, 025002.CrossRefGoogle ScholarPubMed
Stutman, D., Delgado-Aparicio, L., Gorelenkov, N., Finkenthal, M., Fredrickson, E., Kaye, S., Mazzucato, E. & Tritz, K. 2009 Correlation between electron transport and shear Alfvén activity in the National Spherical Torus Experiment. Phys. Rev. Lett. 102, 115002.CrossRefGoogle ScholarPubMed
Thomas, P., Giroud, C., Lomas, P., Stubberfield, P., Rimini, F., Testa, D., Zastrow, K.-D. & DTE1 Experimental Team 2001 Alpha Heating of Thermal Ions in JET. Proc. 28th EPS Conference on Contr. Fusion and Plasma Phys. (Funchal) Eur. Conf. Abstr. 25A, 929932.Google Scholar
Thomas, P.R., Andrew, P., Balet, B., Bartlett, D., Bull, J., de Esch, B., Gibson, A., Gowers, C., Guo, H., Huysmans, G., et al. 1998 Observation of alpha heating in JET DT plasmas. Phys. Rev. Lett. 80, 5548.CrossRefGoogle Scholar
Todo, Y. 2019 Introduction to the interaction between energetic particles and Alfvén eigenmodes in toroidal plasmas. Rev. Mod. Plasma Phys. 3, 1.CrossRefGoogle Scholar
Todo, Y., Berk, H.L. & Breizman, B.N. 2010 Nonlinear magnetohydrodynamic effects on Alfvén eigenmode evolution and zonal flow generation. Nucl. Fusion 50 (8), 084016.CrossRefGoogle Scholar
Tsytovich, V.N. 1977 Theory of Turbulent Plasma. Springer.CrossRefGoogle Scholar
de Vries, P.C., Versloot, T.W., Salmi, A., Hua, M.-D., Howell, D.H., Giroud, C., Parail, V., Saibene, G., Tala, T. & JET-EFDA contributors 2010 Momentum transport studies in JET H-mode discharges with an enhanced toroidal field ripple. Plasma Phys. Control. Fusion 52 (6), 065004.CrossRefGoogle Scholar
Weisen, H., Camenen, Y., Salmi, A., Versloot, T.W., de Vries, P.C., Maslov, M., Tala, T., Beurskens, M., Giroud, C. & JET-EFDA contributors 2012 Identification of the ubiquitous Coriolis momentum pinch in JET tokamak plasmas. Nucl. Fusion 52 (4), 042001.CrossRefGoogle Scholar
Weisen, H., Sips, A.C.C., Challis, C.D., Eriksson, L.-G., Sharapov, S.E., Batistoni, P., Horton, L.D., Zastrow, K.-D. & EFDA-JET contributors 2014 The scientific case for a JET D-T experiment. AIP Conf. Proc. 1612 (1), 7786.CrossRefGoogle Scholar