Published online by Cambridge University Press: 13 March 2009
Montgomery and co-workers have developed a framework to describe the steady state of a turbulent magnetofluid, without the usual recourse to linearization. Thus the magnetic and velocity fields emerge in their fully nonlinear form as a consequence of the selective decays of the invariants of the system. Using this statistical theory of magnetohydrodynamic turbulence, the pressure, magnetic and flow fields of a solar coronal loop have been determined. The spatial and time profiles of the loop pressure are derived. A comparison with the observed properties of the loops is made, whenever possible.