Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-12T14:48:48.716Z Has data issue: false hasContentIssue false

A model laser-compression experiment

Published online by Cambridge University Press:  13 March 2009

J. E. Crow
Affiliation:
Atlas Computer Laboratory, Chilton, Didcot, Oxfordshire
I. J. Spalding
Affiliation:
UKAEA Cuiham Laboratory, Abingdon, Oxfordshire
J. A. Wesson
Affiliation:
UKAEA Cuiham Laboratory, Abingdon, Oxfordshire

Extract

The compression of plasmas by laser beams to produce a significant thermonuclear energy requires very sophisticated experimental techniques and equipment, costing millions of dollars. We review here comparatively simple techniques which should permit a time-resolved demonstration of an isentropic density compression, using low-powered lasers of a type commonly encountered in university research laboratories, and diagnostic equipment of modest cost. Althoughthermonuclear burn cannot be investigatedwith such simple apparatus, many aspects of flux-limited thermal transport, light absorption, and end-effects (i.e. intensity assymmetries) could be conveniently and quantitatively investigated.

Type
Articles
Copyright
Copyright © Cambridge University Press 1975

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Blckerton, R. J. 1973 Nuct. Fusion, 13, 457.CrossRefGoogle Scholar
Boyer, K. 1973 Proc. Japan–US Seminar on Laser Interaction with Matter (ed. Yamanaka, C.). Tokyo: Japan Society for the Promotion of Science.Google Scholar
Brueckner, K. A. 1973 IEEE Trans. Plasma Sci. 1, 13.CrossRefGoogle Scholar
Brueckner, K. A. & Jorna, S. 1974 Rev. Mod. Phys. 46, 325.Google Scholar
Campbell, P. M., Charatis, G. & Montry, G. L. 1975 Phys. Rev. Lett. 34, 74.CrossRefGoogle Scholar
Chen, F. F. 1974 Laser Interaction and Related Plasma Phenomena, vol. 3, p. 291. Plenum.CrossRefGoogle Scholar
Clarke, J. S., Fisher, H. N. & Mason, R. J. 1973 Phys Rev. Lett. 30, 89.Google Scholar
Crow, J. E. 1967 Culham Internal Note.Google Scholar
Dawson, J. M. 1964 Phys. Fluids, 7, 981.Google Scholar
Du, Bois D. F. 1974 Laser Interaction and Related Plasma Phenomena, vol. 3, p. 267. Plenum.Google Scholar
James, D. J. & Pert, G. J. 1973 Nuel. Fusion, 13, 747.Google Scholar
Kruer, W. L., Estabrook, K. G. & Thompson, J. J. 1974 Laser Interaction and Related Plasma Phenomena, vol. 3, p. 341. Plenum.Google Scholar
Morse, R. L. & Nielsen, C. W. 1973 Phys. Fluids, 16, 909.CrossRefGoogle Scholar
Morton, K. W. & Richtmyer, R. 1967 Difference Methods for Initial-Value Problem. Wiley.Google Scholar
Neusser, H. J., Puell, H. & Kaiser, W. 1971 Appi. Phys. Lett. 19, 300.Google Scholar
Nuckolls, J. 1974 Laser Interaction and Related Plasma Phenomena, vol. 3, p. 399. Plenum.Google Scholar
Nuckolls, J., Wood, L., Thiessen, A. & Zimmerman, E. 1972 Nature, 239, 139.Google Scholar
Spalding, I. J. 1972 Kvantovaya Elektronika, 2, 40. (See also 1970 Gulham Rep. CLMR 109.)Google Scholar
Spalding, I. J. 1974 Energia Nucleare, 21, 176.Google Scholar
Spitzer, L. 1962 Physics of Fully-Ionized Gases. Interscience.Google Scholar
Widner, M. M. & Wright, T. P. 1973 Sandia Laboratories Rep. SC-DR-72 0733.Google Scholar