Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-25T07:05:15.987Z Has data issue: false hasContentIssue false

Minority-ion distribution function of a plasma under fundamental and second-harmonic ion-cyclotron heating

Published online by Cambridge University Press:  13 March 2009

B. Weyssow
Affiliation:
Association EURATOM—Etat Belge pour la Fusion, Physique Statistique, Plasmas Optique Non Linéaire, Université Libre de Bruxelles, Campus Plaine U.L.B., CP 231, Boulevard du Triomphe, B-1050 Bruxelles, Belgique

Abstract

The distribution function of the minority ions during ion-cyclotron heating is calculated from a kinetic equation composed of a Landau collision term and a surface-averaged quasi-linear heating term. The kinetic equation is solved by a moment method in which the minority-ion distribution function is expanded in irreducible tensorial Hermite polynomials. The coefficients of the expansion are shown to be solutions of a system of coupled algebraic equations, and the effective minority-ion temperature is deduced from a compatibility constraint. The latter equation is in general too complicated to be solved analytically. The distribution function obtained here is therefore a semi-analytical result.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adam, J. 1987 Plasma Phys. Contr. Fusion 29, 443.Google Scholar
Anderson, D. 1983 J. Plasma Phys. 29, 317.Google Scholar
Anderson, D., Eriksson, L.-G. & Lisak, M. 1985 Nucl. Fusion 12, 1751.CrossRefGoogle Scholar
Balescu, R. 1988 Transport Processes in Plasmas. North-Holland.Google Scholar
Becoulet, A., Gambier, D. J. & Samain, A. 1991 Phys. Fluids B 3, 137.CrossRefGoogle Scholar
Chang, C. S. 1985 Phys. Fluids 28, 3598.CrossRefGoogle Scholar
Chang, C. S. & Colestock, P. 1990 Phys. Fluids B 2, 310.Google Scholar
Chang, C. S., Hammett, G. W. & Goldston, R. J. 1990 Phys. Fluids B 2, 2383.CrossRefGoogle Scholar
Chiu, C. S. 1985 Phys. Fluids 28, 1371.CrossRefGoogle Scholar
Faulconer, D. W. & Evrard, M. P. 1991 Proceedings of 18th EPS Conference on Controlled Fusion and Plasma Physics, Berlin, in Europhysics conference abstract, vol. 15C part III, p. 297, Series Editor Bethge, K., European Physical Society.Google Scholar
Hammett, G. W. 1985 Fast ion studies of ion cyclotron heating in PLT tokamak, Ph.D. thesis, Dept. of Astrophysical Sciences, Princeton University.Google Scholar
Hassan, M. H. A. 1988 Phys. Fluids 31, 597.Google Scholar
Kerbel, G. & McCoy, M. 1985 Phys. Fluids 28, 3629.Google Scholar
Kennel, C. F. & Engelmann, F. 1966 Phys. Fluids 9, 2377.Google Scholar
Koch, R., Descamps, P., Lebeau, D., Messiaen, A. M., Van Eester, D., Weynants, R. R. 1988 Invited paper, 15th European Conference on Controlled Fusion and Plasma Heating, Plasma Physics and Contr. Fusion 30, 1559.Google Scholar
Landau, L. D. 1936 Phys. Z. Sowjetunion 10, 154.Google Scholar
Lebeau, D. 1991 Etude théorique et expérimentale de la réponse d'un plasma thermonucléaire à la modulation de l'amplitude du chauffage radio-fréquence, Ph.D. thesis, Faculté Polytechnique de Mons, Belgium.Google Scholar
Lebeau, P., De Toffol, Ph., Koch, R. 1988 Proceedings of the 17th EPS Conference on Controlled Fusion and Plasma Physics, Amsterdam, Europhysics conference abstracts, vol. 14B part III, p. 1044, Briffod, G., Nijsen-Vis, A., Schüller, F. C. Editors. European Physical Society.Google Scholar
Lebed', S. A. & Longinov, A. V. 1990 Soviet J. Plasma Phys. 16, 188.Google Scholar
Stix, T. H. 1975 Nucl. Fusion 15, 737.Google Scholar