Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-26T18:03:12.294Z Has data issue: false hasContentIssue false

MHD Rankine—Hugoniot equations applied to earth's bow shock

Published online by Cambridge University Press:  13 March 2009

J. D. Mihalov
Affiliation:
Space Sciences Division, Ames Research Center, NASA, Moffett Field, California 94035, USA
C. P. Sonett
Affiliation:
Space Sciences Division, Ames Research Center, NASA, Moffett Field, California 94035, USA
J. H. Wolfe
Affiliation:
Space Sciences Division, Ames Research Center, NASA, Moffett Field, California 94035, USA

Abstract

This paper compares computed results with upstream and downstream thermal pressures, and the downstream ion density and vector flow velocity measured by the Ames plasma probe on the Pioneer 6 spacecraft as earth's bow shock was traversed. The upstream ion density and vector flow velocity measured on Pioneer 6 by this experiment are used as independent variables, together with Pioneer 6 magnetic field measurements. MRD Rankine—Hugoniot equations for an isotropic plasma are used for these computations. Reasonable agreement is obtained between the measured and computed downstream ion density, thermal pressure and convective velocity magnitude and orientation, only when a 1γ change is made to a downstream magnetic field value used in the calculation. There is disagreement between several determinations of shock orientation and that deduced from coplanarity of the reported magnetic fields, and the shock orientation provides the co-ordinate system for solving the Rankine—Hugoniot equations. If a shock orientation determined by velocity coplanarity is used in the calculations, all computed quantities agree well with the experimental results. Other results suggest that a disagreement between computed and measured upstream thermal pressures may not be negligible in comparison with experimental uncertainties in upstream velocity and density. If the computations included anisotropic pressure terms and/or other factors such as plasma turbulence, better agreement might be obtained between computed and measured upstream thermal pressures.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1969

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abraham-Shrauner, B. 1968 J. Geophys. Res. 73, 6299.CrossRefGoogle Scholar
Abraham-Shrauner, B. 1967 J. Plasma Phys. 1, 379.CrossRefGoogle Scholar
Alksne, A. Y. 1967 Planet. Space Sci. 15, 239.CrossRefGoogle Scholar
Bridge, H., Egidi, A., Lazarus, A., Lyon, E. & Jacobson, L. 1965 Space Res. 5, 969.Google Scholar
Burlaga, L. F. & Ogilvie, K. W. 1968 J. Geophys. Res. 73, 6167.CrossRefGoogle Scholar
Colburn, D. S. & Sonett, C. P. 1966 Space Sci. Rev. 5, 439.CrossRefGoogle Scholar
Coleman, P. J. Jr, Sonett, C. P. & Davis, L. Jr, 1961 J. Geophys. Res. 66, 2043.CrossRefGoogle Scholar
Davis, L., Lüst, R. & Schlüter, A. 1958 Z. Naurforsch. 13a, 916.CrossRefGoogle Scholar
De Hoffmann, F. & Teller, E. 1950 Phys. Rev. 80, 692.CrossRefGoogle Scholar
Gold, T. 1955 Discussion in Gas Dynamics of Cosmic Clouds, p. 103. Amsterdam: North—Holland Publishing Co.Google Scholar
Gosling, J. T., Asbridge, J. R., Bame, S. J. & Strong, I. B. 1967 J. Geophys. Res. 72, 101.CrossRefGoogle Scholar
Greenstadt, E. W. & Moreton, G. E. 1962 J. Geophys. Res. 67, 3299.CrossRefGoogle Scholar
Greenstadt, E. W., Inouye, G. T., Green, I. M. & Judge, D. L. 1967 J. Geophys. Res. 72, 3855.CrossRefGoogle Scholar
Helfer, H. 1953 Ap. J. 117, 177.CrossRefGoogle Scholar
Heppner, J. P., Sugiura, M., Skillman, T. L., Ledley, B. G. & Campbell, M. 1967 J. Geophys. Res. 72, 5417.CrossRefGoogle Scholar
Jeffrey, A. & Taniuti, T. 1964 Non-Linear Wave Propagation. New York: Academic Press.Google Scholar
Lincoln, J. V. 1966 J. Geophys. Res. 71, 2411.CrossRefGoogle Scholar
Ness, N. F. & Taylor, H. E. 1967 NASA Goddard Space Flight Center. Rep. No. X-612–67–345.Google Scholar
Ness, N. F., Scearce, C. S. & Cantarano, S. 1966 J. Geophys. Res. 71, 3305.CrossRefGoogle Scholar
Ness, N. F., Scearce, C. S. & Seek, J. B. 1964 J. Geophys. Res. 69, 3531.CrossRefGoogle Scholar
Razdan, H., Colburn, D. S. & Sonett, C. P. 1965 Planet. Space Sci. 13, 1111.CrossRefGoogle Scholar
Siscoe, G. L., Davis, L. Jr, Smith, E. J., Coleman, P. J. Jr, & Jones, D. E. 1967 J. Geophys. Res. 72, 1.CrossRefGoogle Scholar
Sonett, C. P. & Colburn, D. S. 1965 Planet. Space Sci. 13, 675.CrossRefGoogle Scholar
Sonett, C. P., Colburn, D. S., Davis, L. Jr, Smith, E. J. & Coleman, P. J. Jr, 1964 Phys. Rev. Letters 13, 153.CrossRefGoogle Scholar
Spreiter, J. R. & Alksne, A. Y. 1968 Planet. Space Sci. 16, 971.CrossRefGoogle Scholar
Spreiter, J. R., Alksne, A. Y. & Summers, A. L. 1968 Physics of the Magnetosphere, p. 301 (edited by Carovilano, R. L., McClay, J. F. and Radoski, H. R.). Dordrocht– Holland: D. Reidel Publishing Co.CrossRefGoogle Scholar
Spreiter, J. R., Summers, A. L. & Alksne, A. Y. 1968 J. Geophys. Res. 73, 1851.CrossRefGoogle Scholar
Spreiter, J. R., Summers, A. L. & Alksne, A. Y. 1966 Planet. Space Sci. 14, 223.CrossRefGoogle Scholar
Wilcox, J. M. 1968 Space Res. 9 (in the Press).CrossRefGoogle Scholar
Wolfe, J. H. & McKibbin, D. D. 1968 Planet. Space Sci. 16, 953.CrossRefGoogle Scholar
Wolfe, J. H., Silva, R. W., McKibbin, D. D. & Mason, R. H. 1966 J. Geophys. Res. 71, 3329.CrossRefGoogle Scholar
Wolfe, J. H., Silva, R. W., & Myers, M. A. 1966 J. Geophys. Res. 71, 1319.CrossRefGoogle Scholar
Wolfe, J. H. & Silva, R. W., 1965 J. Geophys. Res. 70, 3575.CrossRefGoogle Scholar