Published online by Cambridge University Press: 21 September 2015
JET experiments have compared the efficacy of low- and high-field side ion cyclotron resonance heating (ICRH) as an actuator to deliberately minimise the sawtooth period. It is found that low-field side ICRH with low minority concentration is optimal for sawtooth control for two main reasons. Firstly, low-field side heating means that any toroidal phasing of the ICRH ( $-90^{\circ }$ ,
$+90^{\circ }$ or dipole) has a destabilising effect on the sawteeth, meaning that dipole phasing can be employed, since this is preferable due to less plasma wall interaction from Resonant Frequency (RF) sheaths. Secondly, the resonance position of the low-field side ICRH does not have to be very accurately placed to achieve sawtooth control, relaxing the requirement for real-time control of the RF frequency. These empirical observations have been confirmed by hybrid kinetic–magnetohydrodynamic modelling, and suggest that the ICRH antenna design for ITER is well positioned to provide a control actuator capable of having a significant effect on the sawtooth behaviour.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.