Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-12T14:57:36.075Z Has data issue: false hasContentIssue false

The Maxwell field, its adjoint field and the ‘conjugate’field in anisotropic absorbing media

Published online by Cambridge University Press:  13 March 2009

Kurt Suchy
Affiliation:
Institute for Theoretical Physics, University of Düsseldorf, D4 Düsseldorf 1, Universitätsstrasse 15, West Germany
Colman Altman
Affiliation:
Department of Physics, Technion (Israel Institute of Technology), Haifa, Israel

Extract

In absorbing media, where Maxwell's equations are not seif-adjoint, the adjoint field is introduced via the differential operator adjoint to the Maxwell operator. The concomitant vector can be made equal to the time averaged Poynting vector at a boundary with a non-absorbing medium. In general, the adjoint field represents an electromagnetic field in a medium other than the absorbing medium under consideration. To draw conclusions about the latter, a [conjugate field] in this medium is defined, using a conjugating transformation of the Maxwell operator and field. Relations between the conjugate and adjoint fields are established, allowing one to gather physical information about the first absorbing medium from the adjoint field.

Type
Articles
Copyright
Copyright © Cambridge University Press 1975

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Allis, W. P., Buchsbaum, S. J. & Bers, A. 1963 Waves in Anisotropic Plasmas. MIT Press.Google Scholar
Anderson, D. 1972 Z. Naturforschung 27 a, 1571.CrossRefGoogle Scholar
Arnaud, J. A. 1973 J. Opt. Soc. Amer. 63, 238.CrossRefGoogle Scholar
Berreman, D. W. 1972 J. Opt. Soc. Amer. 62, 502.CrossRefGoogle Scholar
Booker, H. G. 1936 Proc. Roy. Soc. A 155, 235.Google Scholar
Budden, K. G. 1954 Proc. Camb. Phil. Soc. 50, 604.CrossRefGoogle Scholar
Budden, K. G. & Jull, G. W. 1964 Canad. J. Phys. 42, 113.CrossRefGoogle Scholar
Clemmow, P. C. & Heading, J. 1954 Proc. Camb. Phil. Soc. 50, 319.CrossRefGoogle Scholar
Deschamps, G. A. & Kesler, O. B. 1967 Radio Sci. 2, 757.CrossRefGoogle Scholar
Felsen, L. B. & Marcuvitz, N. 1973 Radiation and Scattering of Waves. Prentice Hall.Google Scholar
Furutsu, K. 1952 J. Phys. Soc. Japan, 7, 458.CrossRefGoogle Scholar
Gelman, H. 1973 Can. J. Phys. 51, 2587.CrossRefGoogle Scholar
Lewis, R. M. 1965 Arch. Rat. Mech. Anal. 20, 191.CrossRefGoogle Scholar
Morse, P. M. & Feshbach, H. 1953 Methods of Theoretical Physics, part 1. McGraw.Hill.Google Scholar
Pitteway, M. L. V. & Jespersen, J. L. 1966 J. Atmos. Terr. Phys. 28, 1743.CrossRefGoogle Scholar
Post, E. J. 1962 Formal Structure of Electromagnetics. North-Holland.Google Scholar
Rawer, K. & Suchy, K. 1967 Radio Observations of the Ionosphere. Handbuch der Physik (ed. Flü;gge, S.), vol. 49 (2), P. 1. Springer.Google Scholar
Suchy, K. & Altman, C. 1975 J. Plasma Phys. (To be published.)Google Scholar
Sohler, W. 1974 Optics Communications, 10, 203.CrossRefGoogle Scholar