Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-27T19:20:23.578Z Has data issue: false hasContentIssue false

Low-frequency waves in a high-beta collisionless plasma: polarization, compressibility and helicity

Published online by Cambridge University Press:  13 March 2009

S. Peter Gary
Affiliation:
Earth and Space Science Division, Los Alamos National Laboratory, Los Alamos, NM 87545

Abstract

This paper considers the linear theory of waves near and below the ion cyclotron frequency in an isothermal electron-ion Vlasov plasma which is isotropic, homogeneous and magnetized. Numerical solutions of the full dispersion equation for the magnetosonic/whistler and Alfvén/ion cyclotron modes at βi = 1·0 are presented, and the polarizations, compressibilities, helicities, ion Alfvén ratios and ion cross-helicities are exhibited and compared. At sufficiently large βi and θ, the angle of propagation with respect to the magnetic field, the real part of the polarization of the Alfvén/ion cyclotron wave changes sign, so that, for such parameters, this mode is no longer left-hand polarized. The Alfvén/ion cyclotron mode becomes more compressive as the wavenumber ulereases, whereas the magnetosonic/whistler becomes more compressive with increasing θ, At oblique propagation, the helicity of both modes approaches zero in the long-wavelength limit; in contrast, the ion cross-helicity is of order unity for the Alfvén/ion cyclotron wave and decreases as θ increases for the magnetosonic/whistler mode.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Barnes, A. 1966 Phys. Fluids, 9, 1483.CrossRefGoogle Scholar
Barnes, A. 1979 Solar System Plasma Physics, vol. I (ed. Parker, E. N.Kennel, C. F. and Lanzerotti, L. J.). North-Holland.Google Scholar
Burlaga, L. F. & Goldstein, M. L. 1984 J. Geophys. Res. 89, 6813.CrossRefGoogle Scholar
Gary, S. P. 1980 Phys. Fluids, 23, 1193.CrossRefGoogle Scholar
Gary, S. P., Feldman, W. C., Forslund, D. W. & Montgomery, M. D. 1975 J. Geophys. Res. 80, 4197.CrossRefGoogle Scholar
Gary, S. P. & Mellott, M. M. 1985 J. Geophys. Res. 90, 99.CrossRefGoogle Scholar
Goldstein, M. L., Burlaga, L. F. & Matthaeus, W. H. 1984 J. Geophys. Res. 89, 3474.Google Scholar
Matthaeus, W. H. & Goldstein, M. L. 1982 J. Geophys. Res. 87, 6011.CrossRefGoogle Scholar
Matthaeus, W. H., Goldstein, M. L. & Montgomery, D. C. 1983 Phys. Rev. Lett. 51, 1484.CrossRefGoogle Scholar
Matthaeus, W. H., Goldstein, M. L. & Smith, C. 1982 Phys. Rev. Lett. 48, 1256.CrossRefGoogle Scholar
Smith, C. W., Goldstein, M. L. & Matthaeus, W. H. 1983 J. Geophys. Res. 88, 5581.CrossRefGoogle Scholar
Smith, C. W., Goldstein, M. L. & Matthaeus, W. H. 1984 J. Geophys. Res. 89, 9159.CrossRefGoogle Scholar
Stix, T. H. 1962 The Theory of Plasma Waves. McGraw-Hill.Google Scholar
Tokar, R. L. & Gary, S. P. 1985 Phys. Fluids, 28, 1063.CrossRefGoogle Scholar
Wu, C. S. & Huba, J. D. 1975 Astrophys. J. 196, 849.CrossRefGoogle Scholar