Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-28T02:08:42.801Z Has data issue: false hasContentIssue false

Local and global properties of energy transfer in models of plasma turbulence

Published online by Cambridge University Press:  26 January 2021

Christian L. Vásconez*
Affiliation:
Departamento de Física, Escuela Politécnica Nacional, Ladrón de Guevara E11-253, 170525Quito, Ecuador
D. Perrone
Affiliation:
ASI – Italian Space Agency, Via del Politecnico snc, 00133Rome, Italy
R. Marino
Affiliation:
Laboratoire de Mécanique des Fluides et d'Acoustique, CNRS, École Centrale de Lyon, Université Claude Bernard Lyon 1, INSA de Lyon, ÉcullyF-69134, France
D. Laveder
Affiliation:
Université Côte d'Azur, CNRS, Observatoire de la Côte d'Azur, Laboratoire J. L. Lagrange, Boulevard de l'Observatoire, CS 34229, 06304Nice CEDEX 4, France
F. Valentini
Affiliation:
Dipartimento di Fisica, Università della Calabria, I-87036Rende (CS), Italy
S. Servidio
Affiliation:
Dipartimento di Fisica, Università della Calabria, I-87036Rende (CS), Italy
P. Mininni
Affiliation:
Departamento de Física, Universidad de Buenos Aires and IFIBA, CONICET, 1428Buenos Aires, Argentina
L. Sorriso-Valvo
Affiliation:
Istituto per la Scienza e Tecnologia dei Plasmi (ISTP), Consiglio Nazionale delle Ricerche, Via Amendola 122/D, 70126Bari, Italy Swedish Institute of Space Physics, Ångström Laboratory, Lägerhyddsvägen 1, SE-751 21Uppsala, Sweden
*
Email address for correspondence: [email protected]

Abstract

The nature of the turbulent energy transfer rate is studied using direct numerical simulations of weakly collisional space plasmas. This is done comparing results obtained from hybrid Vlasov–Maxwell simulations of collisionless plasmas, Hall magnetohydrodynamics and Landau fluid models reproducing low-frequency kinetic effects, such as the Landau damping. In this turbulent scenario, estimates of the local and global scaling properties of different energy channels are obtained using a proxy of the local energy transfer. This approach provides information on the structure of energy fluxes, under the assumption that the turbulent cascade transfers most of the energy that is then dissipated at small scales by various kinetic processes in these kinds of plasmas.

Type
Research Article
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Andrés, N., Mininni, P. D., Dmitruk, P. & Gomez, D. O. 2016 von Kármán–Howarth equation for three-dimensional two-fluid plasmas. Phys. Rev. E 93 (6), 063202.CrossRefGoogle ScholarPubMed
Andrés, N., Sahraoui, F., Galtier, S., Hadid, L. Z., Dmitruk, P. & Mininni, P. D. 2018 Energy cascade rate in isothermal compressible magnetohydrodynamic turbulence. J. Plasma Phys. 84 (4), 905840404.CrossRefGoogle Scholar
Andrés, N., Sahraoui, F., Galtier, S., Hadid, L. Z., Ferrand, R. & Huang, S. Y. 2019 Energy cascade rate measured in a collisionless space plasma with MMS data and compressible hall magnetohydrodynamic turbulence theory. Phys. Rev. Lett. 123 (24), 245101.CrossRefGoogle Scholar
Arzamasskiy, L., Kunz, M. W., Chandran, B. D. G. & Quataert, E. 2019 Hybrid-kinetic simulations of ion heating in Alfvénic turbulence. Astrophys. J. 879 (1), 53.CrossRefGoogle Scholar
Bandyopadhyay, R., Goldstein, M. L., Maruca, B. A., Matthaeus, W. H., Parashar, T. N., Ruffolo, D., Chhiber, R., Usmanov, A., Chasapis, A., Qudsi, R., et al. 2020 Enhanced energy transfer rate in solar wind turbulence observed near the Sun from Parker Solar Probe. Astrophys. J. Suppl. Ser. 246, 48.CrossRefGoogle Scholar
Boldyrev, S. & Perez, J. C. 2012 Spectrum of kinetic-Alfvén turbulence. Astrophys. J. Lett. 758 (2), L44.CrossRefGoogle Scholar
Bruno, R. & Carbone, V. 2016 Turbulence in the Solar Wind. Springer.CrossRefGoogle Scholar
Camporeale, E. & Burgess, D. 2017 Comparison of linear modes in kinetic plasma models. J. Plasma Phys. 83 (2), 535830201.CrossRefGoogle Scholar
Camporeale, E., Sorriso-Valvo, L., Califano, F. & Retinò, A. 2018 Coherent structures and spectral energy transfer in turbulent plasma: a space-filter approach. Phys. Rev. Lett. 120 (12), 125101.CrossRefGoogle ScholarPubMed
Carbone, V., Bruno, R., Sorriso-Valvo, L. & Lepreti, F. 2004 Intermittency of magnetic turbulence in slow solar wind. Planet. Space Sci. 52 (10), 953956.CrossRefGoogle Scholar
Carbone, V., Marino, R., Sorriso-Valvo, L., Noullez, A. & Bruno, R. 2009 Scaling laws of turbulence and heating of fast solar wind: the role of density fluctuations. Phys. Rev. Lett. 103 (6), 061102.CrossRefGoogle ScholarPubMed
Carbone, V., Sorriso-Valvo, L. & Marino, R. 2009 On the turbulent energy cascade in anisotropic magnetohydrodynamic turbulence. Europhys. Lett. 88 (2), 25001.CrossRefGoogle Scholar
Carbone, V., Veltri, P. & Mangeney, A. 1990 Coherent structure formation and magnetic field line reconnection in magnetohydrodynamic turbulence. Phys. Fluids A 2 (8), 14871496.CrossRefGoogle Scholar
Cerri, S. S. & Camporeale, E. 2020 Space-filter techniques for quasi-neutral hybrid-kinetic models. Phys. Plasmas 27, 082102.CrossRefGoogle Scholar
Cerri, S. S., Franci, L., Califano, F., Landi, S. & Hellinger, P. 2017 Plasma turbulence at ion scales: a comparison between particle in cell and Eulerian hybrid-kinetic approaches. J. Plasma Phys. 83 (2), 705830202.CrossRefGoogle Scholar
Cerri, S. S., Kunz, M. W. & Califano, F. 2018 Dual phase-space cascades in 3D hybrid-Vlasov–Maxwell turbulence. Astrophys. J. Lett. 856 (1), L13.CrossRefGoogle Scholar
Cerri, S. S. & Califano, F. 2017 Reconnection and small-scale fields in 2D-3V hybrid-kinetic driven turbulence simulations. New J. Phys. 19 (2), 025007.CrossRefGoogle Scholar
Cerri, S. S., Califano, F., Jenko, F., Told, D. & Rincon, F. 2016 Subproton-scale cascades in solar wind turbulence: driven hybrid-kinetic simulations. Astrophys. J. Lett. 822 (1), L12.CrossRefGoogle Scholar
Cerri, S. S., Groselj, D. & Franci, L. 2019 Kinetic plasma turbulence: recent insights and open questions from 3D3V simulations. Front. Astron. Space Sci. 6, 64.CrossRefGoogle Scholar
Chen, C. H. K., Klein, K. G. & Howes, G. G. 2019 Evidence for electron landau damping in space plasma turbulence. Nat. Commun. 10 (1), 18.Google ScholarPubMed
Chen, C. H. K., Sorriso-Valvo, L., Šafránková, J. & Němeček, Z. 2014 Intermittency of solar wind density fluctuations from ion to electron scales. Astrophys. J. Lett. 789 (1), L8.CrossRefGoogle Scholar
Cheng, C.-Z. & Knorr, G. 1976 The integration of the Vlasov equation in configuration space. J. Comput. Phys. 22 (3), 330351.CrossRefGoogle Scholar
Coburn, J. T. & Sorriso-Valvo, L. 2019 Energy transfer in incompressible magnetohydrodynamics: the filtered approach. Fluids 4, 163.CrossRefGoogle Scholar
Duchon, J. & Robert, R. 2000 Inertial energy dissipation for weak solutions of incompressible euler and Navier–Stokes equations. Nonlinearity 13, 249.CrossRefGoogle Scholar
Eyink, G. L. 2003 Local 4/5-law and energy dissipation anomaly in turbulence. Nonlinearity 16, 137.CrossRefGoogle Scholar
Feraco, F., Marino, R., Pumir, A., Primavera, L., Mininni, P. D., Pouquet, A. & Rosenberg, D. 2018 Vertical drafts and mixing in stratified turbulence: sharp transition with Froude number. Europhys. Lett. 123, 4402.CrossRefGoogle Scholar
Ferrand, R., Galtier, S., Sahraoui, F., Meyrand, R., Andrés, N. & Banerjee, S. 2019 On exact laws in incompressible hall magnetohydrodynamic turbulence. Astrophys. J. 881 (1), 50.CrossRefGoogle Scholar
Franci, L., Cerri, S. S., Califano, F., Landi, S., Papini, E., Verdini, A., Matteini, L., Jenko, F. & Hellinger, P. 2017 Magnetic reconnection as a driver for a sub-ion-scale cascade in plasma turbulence. Astrophys. J. Lett. 850 (1), L16.CrossRefGoogle Scholar
Frisch, U. 1995 Turbulence: The Legacy of AN Kolmogorov. Cambridge University Press.CrossRefGoogle Scholar
Galtier, S. 2008 von Kármán–Howarth equations for hall magnetohydrodynamic flows. Phys. Rev. E 77 (1), 015302.CrossRefGoogle ScholarPubMed
Gibelli, L., Shizgal, B. D. & Yau, A. W. 2010 Ion energization by wave–particle interactions: comparison of spectral and particle simulation solutions of the Vlasov equation. Comput. Maths Appl. 59 (8), 25662581.CrossRefGoogle Scholar
Goldstein, B. E., Neugebauer, M., Phillips, J. L., Bame, S., Gosling, J. T., McComas, D., Wang, Y. M., Sheeley, N. R. & Seuss, S. T. 1996 Ulysses plasma parameters: latitudinal, radial, and temporal variations. Astron. Astrophys. 316, 296303.Google Scholar
González, C. A., Parashar, T. N., Gomez, D., Matthaeus, W. H. & Dmitruk, P. 2019 Turbulent electromagnetic fields at sub-proton scales: two-fluid and full-kinetic plasma simulations. Phys. Plasmas 26 (1), 012306.CrossRefGoogle Scholar
Greco, A., Matthaeus, W. H., Servidio, S., Chuychai, P. & Dmitruk, P. 2009 Statistical analysis of discontinuities in solar wind ace data and comparison with intermittent MHD turbulence. Astrophys. J. Lett. 691 (2), L111.CrossRefGoogle Scholar
Grošelj, D., Cerri, S. S., Navarro, A. B., Willmott, C., Told, D., Loureiro, N. F., Califano, F. & Jenko, F. 2017 Fully kinetic versus reduced-kinetic modeling of collisionless plasma turbulence. Astrophys. J. 847 (1), 28.CrossRefGoogle Scholar
Hadid, L. Z., Sahraoui, F., Galtier, S. & Huang, S. Y. 2018 Compressible magnetohydrodynamic turbulence in the Earth's magnetosheath: estimation of the energy cascade rate using in situ spacecraft data. Phys. Rev. Lett. 120, 055102.CrossRefGoogle ScholarPubMed
Hellinger, P., Verdini, A., Landi, S., Franci, L. & Matteini, L. 2018 von Kármán–Howarth equation for hall magnetohydrodynamics: hybrid simulations. Astrophys. J. 857 (2), L19.CrossRefGoogle Scholar
Hughes, R. S., Gary, S. P., Wang, J. & Parashar, T. N. 2017 Kinetic Alfvén turbulence: electron and ion heating by particle-in-cell simulations. Astrophys. J. Lett. 847 (2), L14.CrossRefGoogle Scholar
Kawazura, Y., Barnes, M. & Schekochihin, A. A. 2019 Thermal disequilibration of ions and electrons by collisionless plasma turbulence. Proc. Natl Acad. Sci. 116 (3), 771776.CrossRefGoogle ScholarPubMed
Kiyani, K. H., Chapman, S. C., Sahraoui, F., Hnat, B., Fauvarque, O. & Khotyaintsev, Y. V. 2012 Enhanced magnetic compressibility and isotropic scale invariance at sub-ion Larmor scales in solar wind turbulence. Astrophys. J. 763 (1), 10.CrossRefGoogle Scholar
Leamon, R. J., Smith, C. W., Ness, N. F., Matthaeus, W. H. & Wong, H. K. 1998 Observational constraints on the dynamics of the interplanetary magnetic field dissipation range. J. Geophys. Res. 103 (A3), 47754787.CrossRefGoogle Scholar
Leonardis, E., Sorriso-Valvo, L., Valentini, F., Servidio, S., Carbone, F. & Veltri, P. 2016 Multifractal scaling and intermittency in hybrid Vlasov–Maxwell simulations of plasma turbulence. Phys. Plasmas 23 (2), 022307.CrossRefGoogle Scholar
MacBride, B. T., Forman, M. A. & Smith, C. W. 2005 Turbulence and third moment of fluctuations: Kolmogorov's 4/5 law and its MHD analogues in the solar wind. In Solar Wind 11/SOHO 16, Connecting Sun and Heliosphere (ed. B. Fleck, T. H. Zurbuchen & H. Lacoste). ESA Special Publication.Google Scholar
Marino, R., Sorriso-Valvo, L., D'Amicis, R., Carbone, V., Bruno, R. & Veltri, P. 2012 On the occurrence of the third-order scaling in high latitude solar wind. Astrophys. J. 750, 41.CrossRefGoogle Scholar
Marsch, E., Ao, X.-Z. & Tu, C.-Y. 2004 On the temperature anisotropy of the core part of the proton velocity distribution function in the solar wind. J. Geophys. Res. 109 (A4), A04102.Google Scholar
Matthaeus, W. H., Servidio, S. & Dmitruk, P. 2008 Comment on “kinetic simulations of magnetized turbulence in astrophysical plasmas”. Phys. Rev. Lett. 101 (14), 149501.CrossRefGoogle Scholar
Matthaeus, W. H., Yang, Y., Wan, M., Parashar, T. N., Bandyopadhyay, R., Chasapis, A., Pezzi, O. & Valentini, F. 2020 Pathways to dissipation in weakly collisional plasmas. Astrophys. J. 891 (1), 101.CrossRefGoogle Scholar
Matthews, A. P. 1994 Current advance method and cyclic leapfrog for 2D multispecies hybrid plasma simulations. J. Comput. Phys. 112 (1), 102116.CrossRefGoogle Scholar
Meyrand, R. & Galtier, S. 2013 Anomalous ${k}_{{\perp }}^{{-}8/3}$ spectrum in electron magnetohydrodynamic turbulence. Phys. Rev. Lett. 111, 264501.CrossRefGoogle ScholarPubMed
Papini, E., Franci, L., Landi, S., Verdini, A., Matteini, L. & Hellinger, P. 2019 Can hall magnetohydrodynamics explain plasma turbulence at sub-ion scales? Astrophys. J. 870 (1), 52.CrossRefGoogle Scholar
Parashar, T. N., Salem, C., Wicks, R. T., Karimabadi, H., Gary, S. P. & Matthaeus, W. H. 2015 Turbulent dissipation challenge: a community-driven effort. J. Plasma Phys. 81 (5), 905810513.CrossRefGoogle Scholar
Passot, T., Henri, P., Laveder, D. & Sulem, P. L. 2014 Fluid simulations of ion scale plasmas with weakly distorted magnetic fields. Eur. Phys. J. D 68, 207.CrossRefGoogle Scholar
Perrone, D., Bourouaine, S., Valentini, F., Marsch, E. & Veltri, P. 2014 a Generation of temperature anisotropy for alpha particle velocity distributions in solar wind at 0.3 AU: Vlasov simulations and Helios observations. J. Geophys. Res. 119 (4), 24002410.CrossRefGoogle Scholar
Perrone, D., Passot, T., Laveder, D., Valentini, F., Sulem, P. L., Zouganelis, I., Veltri, P. & Servidio, S. 2018 Fluid simulations of plasma turbulence at ion scales: comparison with Vlasov–Maxwell simulations. Phys. Plasmas 25 (5), 052302.CrossRefGoogle Scholar
Perrone, D., Valentini, F., Servidio, S., Dalena, S. & Veltri, P. 2014 b Analysis of intermittent heating in a multi-component turbulent plasma. Eur. Phys. J. D 68 (7), 209.CrossRefGoogle Scholar
Pezzi, O. 2017 Solar wind collisional heating. J. Plasma Phys. 83 (3), 555830301.CrossRefGoogle Scholar
Pezzi, O., Parashar, T. N., Servidio, S., Valentini, F., Vásconez, C. L., Yang, Y., Malara, F., Matthaeus, W. H. & Veltri, P. 2017 Colliding Alfvénic wave packets in magnetohydrodynamics, hall and kinetic simulations. J. Plasma Phys. 83 (1), 705830108.CrossRefGoogle Scholar
Pezzi, O., Perrone, D., Servidio, S., Valentini, F., Sorriso-Valvo, L. & Veltri, P. 2019 Proton–proton collisions in the turbulent solar wind: hybrid Boltzmann–Maxwell simulations. Astrophys. J. 887 (2), 208.CrossRefGoogle Scholar
Pezzi, O., Servidio, S., Perrone, D., Valentini, F., Sorriso-Valvo, L., Greco, A., Matthaeus, W. H. & Veltri, P. 2018 Velocity-space cascade in magnetized plasmas: numerical simulations. Phys. Plasmas 25 (6), 060704.CrossRefGoogle Scholar
Pezzi, O., Valentini, F. & Veltri, P. 2016 Collisional relaxation of fine velocity structures in plasmas. Phys. Rev. Lett. 116 (14), 145001.CrossRefGoogle ScholarPubMed
Politano, H. & Pouquet, A. 1998 Dynamical length scales for turbulent magnetized flows. Geophys. Res. Lett. 25 (3), 273276.CrossRefGoogle Scholar
Primavera, L. & Florio, E. 2020 Parallel algorithms for multifractal analysis of river networks. In Numerical Computations: Theory and Algorithms. NUMTA 2019. Lecture Notes in Computer Science (ed. Y. Sergeyev & D. Kvasov), vol 11973. Springer, Cham.CrossRefGoogle Scholar
Primavera, L., Malara, F., Servidio, S., Nigro, G. & Veltri, P. 2019 Parametric instability in two-dimensional Alfvénic turbulence. Astrophys. J. 880 (2), 156.CrossRefGoogle Scholar
Pucci, F., Vásconez, C. L., Pezzi, O., Servidio, S., Valentini, F., Matthaeus, W. H. & Malara, F. 2016 From Alfvén waves to kinetic Alfvén waves in an inhomogeneous equilibrium structure. J. Geophys. Res. 121 (2), 10241045.CrossRefGoogle Scholar
Salem, C.S., Howes, G. G., Sundkvist, D., Bale, S. D., Chaston, C. C., Chen, C. H. K. & Mozer, F. S. 2012 Identification of kinetic Alfvén wave turbulence in the solar wind. Astrophys. J. Lett. 745 (1), L9.CrossRefGoogle Scholar
Servidio, S., Chasapis, A., Matthaeus, W. H., Perrone, D., Valentini, F., Parashar, T. N., Veltri, P., Gershman, D., Russell, C. T., Giles, B., et al. 2017 Magnetospheric multiscale observation of plasma velocity-space cascade: hermite representation and theory. Phys. Rev. Lett. 119 (20), 205101.CrossRefGoogle ScholarPubMed
Servidio, S., Dmitruk, P. A., Greco, A., Wan, M., Donato, S., Cassak, P. A., Shay, M. A., Carbone, V. & Matthaeus, W. H. 2011 Magnetic reconnection as an element of turbulence. Nonlinear Process. Geophys. 18 (5), 675.CrossRefGoogle Scholar
Servidio, S., Matthaeus, W. H. & Dmitruk, P. 2008 Depression of nonlinearity in decaying isotropic MHD turbulence. Phys. Rev. Lett. 100 (9), 095005.CrossRefGoogle ScholarPubMed
Servidio, S., Matthaeus, W. H., Shay, M. A., Cassak, P. A. & Dmitruk, P. 2009 Magnetic reconnection in two-dimensional magnetohydrodynamic turbulence. Phys. Rev. Lett. 102 (11), 115003.CrossRefGoogle ScholarPubMed
Servidio, S., Valentini, F., Califano, F. & Veltri, P. 2012 Local kinetic effects in two-dimensional plasma turbulence. Phys. Rev. Lett. 108 (4), 045001.CrossRefGoogle ScholarPubMed
Servidio, S., Valentini, F., Perrone, D., Greco, A., Califano, F., Matthaeus, W. H. & Veltri, P. 2015 A kinetic model of plasma turbulence. J. Plasma Phys. 81 (1), 325810107.CrossRefGoogle Scholar
Settino, A., Malara, F., Pezzi, O., Onofri, M., Perrone, D. & Valentini, F. 2020 Kelvin–Helmholtz instability at proton scales with an exact kinetic equilibrium. Astrophys. J. 901 (1), 17.CrossRefGoogle Scholar
Smith, C. W., Matthaeus, W. H., Zank, G. P., Ness, N. F., Oughton, S. & Richardson, J. D. 2001 Heating of the low-latitude solar wind by dissipation of turbulent magnetic fluctuations. J. Geophys. Res. 106 (A5), 82538272.CrossRefGoogle Scholar
Sorriso-Valvo, L., Carbone, V., Noullez, A., Politano, H., Pouquet, A. & Veltri, P. 2002 Analysis of cancellation exponents in two-dimensional MHD turbulence. Phys. Plasmas 9, 89.CrossRefGoogle Scholar
Sorriso-Valvo, L., Carbone, V., Veltri, P., Consolini, G. & Bruno, R. 1999 Intermittency in the solar wind turbulence through probability distribution functions of fluctuations. Geophys. Res. Lett. 26 (13), 18011804.CrossRefGoogle Scholar
Sorriso-Valvo, L., Catapano, F., Retinò, A., Le Contel, O., Perrone, D., Roberts, O. W., Coburn, J. T., Panebianco, V., Valentini, F., Perri, S., et al. 2019 Turbulence-driven ion beams in the magnetospheric Kelvin–Helmholtz instability. Phys. Rev. Lett. 122 (3), 035102.CrossRefGoogle ScholarPubMed
Sorriso-Valvo, L., Marino, R., Carbone, V., Noullez, A., Lepreti, F., Veltri, P., Bruno, R., Bavassano, B. & Pietropaolo, E. 2007 Observation of inertial energy cascade in interplanetary space plasma. Phys. Rev. Lett. 99, 115001.CrossRefGoogle ScholarPubMed
Sorriso-Valvo, L., Perrone, D., Pezzi, O., Valentini, F., Servidio, S., Zouganelis, I. & Veltri, P. 2018 Local energy transfer rate and kinetic processes: the fate of turbulent energy in two-dimensional hybrid Vlasov–Maxwell numerical simulations. J. Plasma Phys. 84 (2), 725840201.CrossRefGoogle Scholar
Sulem, P. L. & Passot, T. 2015 Landau fluid closures with nonlinear large-scale finite Larmor radius corrections for collisionless plasmas. J. Plasma Phys. 81 (1), 325810103.CrossRefGoogle Scholar
TenBarge, J. M. & Howes, G. G. 2012 Evidence of critical balance in kinetic Alfvén wave turbulence simulations. Phys. Plasmas 19 (5), 055901.CrossRefGoogle Scholar
TenBarge, J. M. & Howes, G. G. 2013 Current sheets and collisionless damping in kinetic plasma turbulence. Astrophys. J. Lett. 771 (2), L27.CrossRefGoogle Scholar
Tu, C.-Y. & Marsch, E. 1995 MHD structures, waves and turbulence in the solar wind: observations and theories. Space Sci. Rev. 73 (1–2), 1210.CrossRefGoogle Scholar
Vaivads, A., Retinò, A., Soucek, J., Khotyaintsev, Y. V., Valentini, F., Escoubet, C. P., Alexandrova, O., André, M., Bale, S. D., Balikhin, M., et al. 2016 Turbulence heating observer–satellite mission proposal. J. Plasma Phys. 82 (5), 905820501.CrossRefGoogle Scholar
Valentini, F., Perrone, D., Stabile, S., Pezzi, O., Servidio, S., De Marco, R., Marcucci, F., Bruno, R., Lavraud, B., De Keyser, J., et al. 2016 Differential kinetic dynamics and heating of ions in the turbulent solar wind. New J. Phys. 18 (12), 125001.CrossRefGoogle Scholar
Valentini, F., Perrone, D. & Veltri, P. 2011 Short-wavelength electrostatic fluctuations in the solar wind. Astrophys. J. 739 (1), 54.CrossRefGoogle Scholar
Valentini, F., Trávníček, P., Califano, F., Hellinger, P. & Mangeney, A. 2007 A hybrid-Vlasov model based on the current advance method for the simulation of collisionless magnetized plasma. J. Comput. Phys. 225 (1), 753770.CrossRefGoogle Scholar
Valentini, F., Vásconez, C. L., Pezzi, O., Servidio, S., Malara, F. & Pucci, F. 2017 Transition to kinetic turbulence at proton scales driven by large-amplitude kinetic Alfvén fluctuations. Astron. Astrophys. 599, A8.CrossRefGoogle Scholar
Valentini, F., Veltri, P., Califano, F. & Mangeney, A. 2008 Cross-scale effects in solar-wind turbulence. Phys. Rev. Lett. 101 (2), 025006.CrossRefGoogle ScholarPubMed
Van Leer, B. 1977 Towards the ultimate conservative difference scheme. III. Upstream-centered finite-difference schemes for ideal compressible flow. J. Comput. Phys. 23 (3), 263275.CrossRefGoogle Scholar
Vásconez, C. L., Pucci, F., Valentini, F., Servidio, S., Matthaeus, W. H. & Malara, F. 2015 Kinetic Alfvén wave generation by large-scale phase mixing. Astrophys. J. 815 (1), 7.CrossRefGoogle Scholar
Vásconez, C. L., Valentini, F., Camporeale, E. & Veltri, P. 2014 Vlasov simulations of kinetic Alfvén waves at proton kinetic scales. Phys. Plasmas 21 (11), 112107.CrossRefGoogle Scholar
Verdini, A., Grappin, R., Hellinger, P., Landi, S. & Müller, W. C. 2015 Anisotropy of the third-order structure functions in MHD turbulence. Astrophys. J. 804 (2), 119.CrossRefGoogle Scholar
Wan, M., Matthaeus, W. H., Roytershteyn, V., Karimabadi, H., Parashar, T., Wu, P. & Shay, M. 2015 Intermittent dissipation and heating in 3D kinetic plasma turbulence. Phys. Rev. Lett. 114 (17), 175002.CrossRefGoogle ScholarPubMed
Wu, P., Perri, S., Osman, K., Wan, M., Matthaeus, W. H., Shay, M. A., Goldstein, M. L., Karimabadi, H. & Chapman, S. 2013 Intermittent heating in solar wind and kinetic simulations. Astrophys. J. Lett. 763 (2), L30.CrossRefGoogle Scholar
Yang, Y., Matthaeus, W. H., Parashar, T. N., Wu, P., Wan, M., Shi, Y., Chen, S., Roytershteyn, V. & Daughton, W. 2017 Energy transfer channels and turbulence cascade in Vlasov–Maxwell turbulence. Phys. Rev. E 95 (6), 061201.CrossRefGoogle ScholarPubMed
Zimbardo, G., Greco, A., Sorriso-Valvo, L., Perri, S., Vörös, Z., Aburjania, G., Chargazia, K. & Alexandrova, O. 2010 Magnetic turbulence in the geospace environment. Space Sci. Rev. 156 (1–4), 89134.CrossRefGoogle Scholar