Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-30T17:20:29.852Z Has data issue: false hasContentIssue false

Linear modes in the partially ionized heliosphere plasma

Published online by Cambridge University Press:  06 January 2011

M. E. KELLUM
Affiliation:
Division of Mathematics, Calhoun Community College, P.O. Box 2216 Decatur, AL 35609-2216, USA
DASTGEER SHAIKH
Affiliation:
Department of Physics and Center for Space Physics and Aeronomic Research (CSPAR), University of Alabama at Huntsville, Huntsville, AL 35805, USA ([email protected])

Abstract

The heliosphere is predominantly a partially ionized plasma that consists of electrons, ions and significant neutral atoms. Nonlinear interactions among these species take place through direct collision or charge-exchange processes. These interactions modify linear and nonlinear properties of the plasma. In this work, we develop a one-dimensional linear theory to investigate linear instabilities in such a system. In our model, the electrons and ions are described by a single fluid compressible magnetohydrodynamic (MHD) model and are coupled self-consistently to the neutral fluid via compressible hydrodynamic equations. The coupling is mediated by the charge-exchange process. Based on our self-consistent analysis, we find that the charge-exchange coupling is more effective at larger length scales, and the Alfvén waves are not affected by the charge-exchange coupling. By contrast, the fast and slow waves are driven linearly unstable.

Type
Papers
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Balsara, D. 1996 Astrophys. J. 465, 775.CrossRefGoogle Scholar
[2]Fite, W. L., Smith, A. C. H. and Stebbings, R. F. 1962 Proc. R. Soc. Lond. A 268, 527.Google Scholar
[3]Florinski, V., Zank, G. P. and Pogorelov, N. V. 2003 J. Geophys. Res. 108 (A6), 1228, doi:10.1029/2002JA009695.Google Scholar
[4]Florinski, V., Zank, G. P. and Pogorelov, N. V. 2005 J. Geophys. Res. 110, A07104, doi:10.1029/2004JA010879.Google Scholar
[5]Gigliotti, A., Gekelman, W., Pribyl, P., Vincena, S., Karavaev, A., Shao, X., Sharma, A. and Papadopoulos, D. 2009 Phys. Plasmas 16, 092106.CrossRefGoogle Scholar
[6]Gekelman, W. 2004 J. Geophys. Res. 109, A01311.Google Scholar
[7]Kulsrud, R. and Pearce, W. P. 1969 Astrophys. J. 156, 445.CrossRefGoogle Scholar
[8]Leake, J., Arber, T. D. and Khodachenko, M. L. 2005 Astron. Astrophys. 442, 1091.Google Scholar
[9]Oishi, J. S. and Mac Low, M. 2006 Astrophys. J. 638, 281.CrossRefGoogle Scholar
[10]Padoan, P., Zweibel, E. and Nordlund, A. 2000 Astrophys. J. 540, 332.CrossRefGoogle Scholar
[11]Pauls, H. L., Zank, G. P. and Williams, L. L. 1995 J. Geophys. Res. A 11, 21595.CrossRefGoogle Scholar
[12]Shaikh, D. and Zank, G. P. 2008 Astrophys. J. 688 (1), 683694.CrossRefGoogle Scholar
[13]Shaikh, D. and Zank, G. P. 2006 Astrophys. J., 640 (2), L195L198.CrossRefGoogle Scholar
[14]Shaikh, D. and Shukla, P. K. 2009 Phys. Rev. Lett. 102 (4), id. 045004.CrossRefGoogle Scholar
[15]Shaikh, D. and Zank, G. P. 2010 Phys. Lett. A 374, 45384542.CrossRefGoogle Scholar
[16]Wood, B. E., Harper, G. M., Muller, H. R., Heerikhuisen, J. and Zank, G. P. 2007 Astrophys. J. 655, 946.CrossRefGoogle Scholar
[17]Zank, G. P. 1999 Space Sci. Rev. 89, 413688.Google Scholar