Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-27T22:16:56.620Z Has data issue: false hasContentIssue false

Levitated dust particles subjected to plasma jet

Published online by Cambridge University Press:  15 January 2010

C. M. TICOŞ
Affiliation:
National Institute for Lasers, Plasma and Radiation Physics, 077125 Bucharest, Romania ([email protected])
I. JEPU
Affiliation:
National Institute for Lasers, Plasma and Radiation Physics, 077125 Bucharest, Romania ([email protected])
C. P. LUNGU
Affiliation:
National Institute for Lasers, Plasma and Radiation Physics, 077125 Bucharest, Romania ([email protected])
P. CHIRU
Affiliation:
National Institute for Lasers, Plasma and Radiation Physics, 077125 Bucharest, Romania ([email protected])
V. ZAROSCHI
Affiliation:
National Institute for Lasers, Plasma and Radiation Physics, 077125 Bucharest, Romania ([email protected])
A. M. LUNGU
Affiliation:
National Institute for Lasers, Plasma and Radiation Physics, 077125 Bucharest, Romania ([email protected])

Abstract

A dust crystal levitated in the sheath of a radio-frequency plasma is subjected to a pulsed plasma jet expelled from a minicoaxial gun. The dust particles, initially found at rest and self-organized in a 3-D structure, are dragged by the plasma jet for a short distance and come to rest when the action of the jet terminates. The trajectories of the microparticles are tracked in vertical and horizontal planes with a high-speed camera. From in situ observations of dust particle dynamics the dust acceleration is compared to numerical simulations.

Type
Papers
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Shukla, P. K. and Eliasson, B. 2009 Colloquium: fundamentals of dust-plasma interactions. Rev. Mod. Phys. 81, 2544.CrossRefGoogle Scholar
[2]Morfill, G. E. and Thomas, H. 1996 Plasma crystals. J. Vac. Sci. Technol. A14, 490495.CrossRefGoogle Scholar
[3]Shukla, P. K. and Mamun, A. A. 2002 Dynamics of dust grains. In: Introduction to Dusty Plasma Physics. Bristol, UK: Institute of Physics pp. 7093.CrossRefGoogle Scholar
[4]Liao, C.-T., Teng, L.-W., Tsai, C.-Y., Io, C.-W. and I, L. 2008 Lagrangian-eulerian micromotion and wave heating in nonlinear self-excited dust-acoustic waves. Phys. Rev. Lett. 100, 185004–1/4.CrossRefGoogle ScholarPubMed
[5]Ratynskaia, S. et al. 2004 Experimental determination of dust-particle charge in a discharge plasma at elevated pressures. Phys. Rev. Lett. 93, 085001–1/4.CrossRefGoogle Scholar
[6]Hirt, M., Block, D. and Piel, A. 2004 Measurement of the ion drag force on free falling microspheres in a plasma. Phys. Plasmas 11, 56905696.CrossRefGoogle Scholar
[7]Barkan, A., Merlino, R. L. and D'Angelo, N. 1995 Laboratory observation of the dust acoustic wave mode. Phys. Plasmas 2, 35633565.CrossRefGoogle Scholar
[8]Wang, Z. H., Ticos, C. M. and Wurden, G. A. 2007 Dust trajectories and diagnostic applications beyond strongly coupled dusty plasmas. Phys. Plasmas 14, 103701–1/11.CrossRefGoogle Scholar
[9]Ticos, C. M., Wang, Z. H., Wurden, G. A., Kline, J. L. and Montgomery, D. S. 2008 Plasma jet acceleration of dust particles to hyper velocities. Phys. Plasmas 15, 103701–1/9.CrossRefGoogle Scholar
[10]Hutchinson, I. H. 2005 Ion collection by a sphere in a flowing plasma: 3. Floating potential and drag force I H. Plasma Phys. Contr. Fusion 47, 7187.CrossRefGoogle Scholar
[11]Lapenta, G. 2002 Nature of the force field in plasma wakes. Phys. Rev. E 66, 026409–1/6.CrossRefGoogle ScholarPubMed
[12]Kilgore, M. D., Daugherty, J. E., Porteous, R. K. and Graves, D. B. 1993 Ion drag on an isolated particulate in low-pressure discharge. J. Appl. Phys. 73, 7195.CrossRefGoogle Scholar
[13]Khrapak, S. A., Ivlev, A. V. and Morfill, G. E. 2004 Momentum transfer in complex plasmas. Phys. Rev. E 70, 056405–1/9.CrossRefGoogle ScholarPubMed
[14]Castaldo, C. et al. 2007 Diagnostics of fast dust particles in tokamak edge plasmas. Nucl. Fusion 47, L5L9.CrossRefGoogle Scholar
[15]Annaratone, B. M., Antonova, T., Goldbeck, D. D., Thomas, H. M. and Morfill, G. E. 2004 Complex-plasma manipulation by radio frequency biasing. Plasma Phys. Control. Fusion 46 B495B509.CrossRefGoogle Scholar
[16]Ticos, C. M., Wang, Z. H., Dorf, L. A. and Wurden, G. A. 2006 Plasmadynamic hyper velocity dust injector for the national spherical torus experiment. Rev. Sci. Instrum. 77, 10E304–1/3.CrossRefGoogle Scholar
[17]Ticos, C. M., Dyson, A. and Smith, P. W. 2004 The charge on falling dust particles in a RF plasma with DC negative bias. Plasma Sources Sci. Technol. 13, 395402.CrossRefGoogle Scholar
[18]Allen, J. E. 1992 Probe theory – the orbital motion approach. Phys. Scripta 45, 497503.CrossRefGoogle Scholar
[19]Barnes, M. S., Keller, J. H., Forster, J. C., O'Neill, J. A. and Coultas, D. K. 1992 Transport of dust particles in glow discharge plasmas. Phys. Rev. Lett. 68, 313316.CrossRefGoogle ScholarPubMed