Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-28T02:03:41.256Z Has data issue: false hasContentIssue false

Kinetic theory of transverse plasmons in pair plasmas

Published online by Cambridge University Press:  16 April 2010

S. Q. LIU
Affiliation:
School of Materials Science and Engineering, Nanchang University, Nanchang 330047, China
Y. LIU
Affiliation:
School of Materials Science and Engineering, Nanchang University, Nanchang 330047, China School of Sciences, Nantong University, Nantong 226019, China ([email protected])

Abstract

A set of nonlinear governing equations for interactions of transverse plasmons with pair plasmas is derived from Vlasov–Maxwell equations. It is shown the ponderomotive force induced by high-frequency transverse plasmons will expel the pair particles away, resulting in the formation of density cavity in which transverse plasmons are trapped. Numerical results show the envelope of wave fields will collapse and break into a filamentary structure due to the spatially inhomogeneous growth rate. The results obtained would be useful for understanding the nonlinear propagation behavior of intense electromagnetic waves in pair plasmas.

Type
Papers
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Ress, M. J. 1983 In: The Very Early Universe (ed. Gibbons, G. W., Hanking, S. W. and Siklas, S.). Cambridge: Cambridge University Press, pp. 2958.Google Scholar
[2]Miller, H. R. and Witta, P. J. 1987 Active Galactive Nuclei. Berlin: Springer, p. 202.Google Scholar
[3]Michel, F. C. 1982 Theory of pulsar magnetospheres. Rev. Mod. Phys. 54, 166.CrossRefGoogle Scholar
[4]Greaves, R. G. and Surko, C. M. 1995 An electron–positron beam–plasma experiment. Phys. Rev. L 75, 38463849.CrossRefGoogle ScholarPubMed
[5]Gilbert, S. J., Dubin, D. H. E., Greaves, R. G. and Surko, C. M. 2001 An electron–positron beam–plasma instability. Phys. Plasmas 8, 49824994.CrossRefGoogle Scholar
[6]Oohara, W., Date, D. and Hatakeyama, R. 2005 Electrostatic waves in a paired Fullerene-Ion plasma. Phys. Rev. L 95, 175003.Google Scholar
[7]Oohara, W. and Hatakeyama, R. 2007 Basic studies of the generation and collective motion of pair-ion plasmas. Phys. Plasmas 14, 055704.CrossRefGoogle Scholar
[8]Oohara, W., Iwata, H., Date, D. and Hatakeyama, R. 2005 Formation of fullerene dimers in pair-ion plasma. Thin Solid Films 475, 4953.CrossRefGoogle Scholar
[9]Sakai, J. and Kawata, T. 1980 Waves in an ultra-relativistic electron-positron plasma. J. Phys. Soc. Japan 49, 747752.CrossRefGoogle Scholar
[10]Stenflo, L., Shukla, P. K. and Yu, M. Y. 1985 Nonlinear propagation of electromagnetic waves in magnetized electron-positron plasmas. Astrophys. Space Sci. 117, 303308.CrossRefGoogle Scholar
[11]Yu, M. Y., Shukla, P. K. and Stenflo, L. 1986 Alfven vortices in a strongly magnetized electron-position plasma. Astrophys. J. 309, L63L65.CrossRefGoogle Scholar
[12]Shukla, P. K. and Stenflo, L. 1993 Nonlinear coupling between electromagnetic fields in a strongly magnetized electron-positron plasma. Astrophys. Space Sci. 209, 323326.CrossRefGoogle Scholar
[13]Iwamoto, N. 1993 Collective modes in nonrelativistic electron-positron plasmas. Phys. Rev. E 47, 604611.CrossRefGoogle ScholarPubMed
[14]Zank, G. P. and Greaves, R. G. 1995 Linear and nonlinear modes in nonrelativistic electron-positron plasmas. Phys. Rev. E 51, 60796090.CrossRefGoogle ScholarPubMed
[15]Verheest, F. 1996 Solitary Alfven modes in relativistic electron-positron plasmas. Phys. Lett. A 213, 177182.CrossRefGoogle Scholar
[16]Verheest, F. 2006 Existence of bulk acoustic modes in pair plasmas. Phys. Plasmas 13, 082301.CrossRefGoogle Scholar
[17]Ali, S., Moslem, W. M., Shukla, P. K. and Schlickeiser, R. 2007 Linear and nonlinear ion-acoustic waves in an unmagnetized electron-positron-ion quantum plasma. Phys. Plasmas 14, 082307.CrossRefGoogle Scholar
[18]Zhao, B. and Zheng, J. 2007 A Fokker–Planck study of the eigenmodes in an unmagnetized pair plasma. Phys. Plasmas 14, 062106.CrossRefGoogle Scholar
[19]Vranjes, J. and Poedts, S. 2005 On waves and instabilities in pair-ion plasma. Plasma Sources Sci. Technol. 14, 485491.CrossRefGoogle Scholar
[20]Liu, S. Q. and Li, X. Q. 2000 Self-generated magnetic field by transverse plasmons in laser-produced plasma. Phys. Plasmas 7, 34053412.CrossRefGoogle Scholar
[21]Li, X. Q. and Ma, Y. H. 1993 Self-generated magnetic field by transverse plasmons in celestial bodies. Astron. Astrophys. 270 534542.Google Scholar
[22]Lifshitz, E. N. and Pitaevskii, L. P. 1981 Physical Kinetics. Oxford: Pergamon Press, p. 115.CrossRefGoogle Scholar
[23]Verheest, F. and Cattaert, T. 2004 Large amplitude solitary electromagnetic waves in electron-positron plasmas. Phys. Plasma 11, 30783082.CrossRefGoogle Scholar
[24]Liu, S. Q. and Li, X. Q. 2001 Investigation of intermittent magnetic flux in the auroral zones with kilometer radiation(AKR). Phys. Plasmas 8, 625630.CrossRefGoogle Scholar
[25]Aliev, Y. M., Frolov, A. A., Stenflo, L. and Shukla, P. K. 1990 Hydrodynamic theory for the magnetization current in a collisionless plasma. Phys. Fluids B 2, 3437.CrossRefGoogle Scholar
[26]Lazar, M., Schlickeiser, R. and Shukla, P. K. 2006 Nonlinear response of a relativistic plasma to intense fields: generation of strong quasistatic magnetic fields. Phys. Plasmas 13, 102302.CrossRefGoogle Scholar