Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-28T02:16:01.292Z Has data issue: false hasContentIssue false

Kinetic theory for a distribution of ionized dust particles

Published online by Cambridge University Press:  13 March 2009

T. K. Aslaksen
Affiliation:
The Auroral Observatory, University of Troinsø, IMR, N-9037 Tromsøash;, Norway
O. Havnes
Affiliation:
The Auroral Observatory, University of Troinsø, IMR, N-9037 Tromsøash;, Norway

Abstract

Dust particles, assumed to be of one size and to exhibit a discrete distribution of electric charges, are treated as heavy ions with a large number of ionization levels. The average of the discrete particle effects on the kinetic equations is approximated by the Lénard–Balescu collision term and by detailed counting to describe transport in velocity space and transitions between the differentionization levels respectively. We estimate analytically and numerically the relaxation times for the dust particles both towards a Maxwellian velocity distribution and towards an equilibrium distribution for the ionization levels. We sum over the ionization levels to obtain a hierarchy of ‘charge-moment’ equations for the single dust density function, and estimate the importance of terms originating from the ionization distribution. Similar terms are also present in the hydrodynamic equations for a dust plasma, and we briefly discuss these.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Boufendi, L., Bouchoule, A., Porteous, R. K., Blondeau, J. P., Plain, A. &Laure, C. 1993 J. Appl. Phys. 73, 2160.CrossRefGoogle Scholar
Cui, C. &Goree, J. 1994 Fluctuation of the charge on a dust grain in a plasma. Submitted to IEEE Trans. Plasma Sci. (Special issue on charged dust in plasmas).Google Scholar
Gail, H.-P. &Sedlmayr, E. 1975 Astron. Astrophys. 41, 359.Google Scholar
Goertz, C. K. &Ip, W.-H. 1984 Geophys. Res. Lett. 11, 349.CrossRefGoogle Scholar
Havnes, O., Hartquist, T. W. &Pilipp, W. 1987 The effects of dust on the ionization structure and dynamics in magnetized clouds, in Physical Processes in Interstellar clouds, ed Morfill, G. E. and Scholer, M., p. 389, D. Reidel Publ. Comp.CrossRefGoogle Scholar
Havnes, O., Aanesen, T. K. &Melandsø, F. 1990 J. Geophys. Res. 95, 6581.CrossRefGoogle Scholar
Ikezi, H. 1985 Coulomb solid of small particles in plasma. GA Technologies Report GAA18195.Google Scholar
Macdonald, W. M., Rosenbluth, M. N. &Chuck, W. 1957 Phys. Rev. 107, 350.CrossRefGoogle Scholar
Melandsø, F., Aslaksen, T. K. &Havnes, O. 1993 J. Geophys. Res. 98, 13315.CrossRefGoogle Scholar
Nakano, T. &Umebayashi, T. 1980 Publ. Astron. Soc. Japan 32, 613.Google Scholar
Nicholson, D. R. 1983 Introduction to Plasma Theory. Wiley.Google Scholar
Nitter, T., Aslaksen, T. K., Melandsø, F. &Havnes, O. 1994 Levitation and dynamics of a collection of dust particles in a fully ionized plasma sheath. IEEE Trans. Plasma Sci. (in press).CrossRefGoogle Scholar
Sodha, M. S. &Guha, S. 1971 Adv. Plasma Phys. 4, 219.Google Scholar
Spitzer, L. 1962 Physics of Fully Ionized Gases, 2nd edn. Wiley-Interscience.Google Scholar
Spitzer, L. 1968 Diffuse Matter in Space. Interscience.Google Scholar
Tsytovich, V. N., Morfill, G. E., Bingham, R. &DeAngelis, U. Angelis, U. 1989 Comments Plasma Phys. Contr. Fusion 13, 133.Google Scholar
Whipple, E. C. 1981 Rep. Prog. Phys. 44, 1197.CrossRefGoogle Scholar