Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-24T02:23:19.994Z Has data issue: false hasContentIssue false

Kinetic entropy-based measures of distribution function non-Maxwellianity: theory and simulations

Published online by Cambridge University Press:  21 October 2020

Haoming Liang*
Affiliation:
Center for Space Plasma and Aeronomic Research, University of Alabama in Huntsville, Huntsville, AL35899, USA Department of Physics and Astronomy, West Virginia University, Morgantown, WV26506, USA
M. Hasan Barbhuiya
Affiliation:
Department of Physics and Astronomy, West Virginia University, Morgantown, WV26506, USA
P. A. Cassak
Affiliation:
Department of Physics and Astronomy, West Virginia University, Morgantown, WV26506, USA Center for KINETIC Plasma Physics, West Virginia University, Morgantown, WV26506, USA
O. Pezzi
Affiliation:
Gran Sasso Science Institute, Viale F. Crispi 7, I-67100 L'Aquila, Italy INFN/Laboratori Nazionali del Gran Sasso, I-67100Assergi(AQ), Italy Istituto per la Scienza e Tecnologia dei Plasmi, CNR, Via Amendola 122/D, I-70126Bari, Italy
S. Servidio
Affiliation:
Dipartimento di Fisica, Università della Calabria, I-87036Rende(CS), Italy
F. Valentini
Affiliation:
Dipartimento di Fisica, Università della Calabria, I-87036Rende(CS), Italy
G. P. Zank
Affiliation:
Center for Space Plasma and Aeronomic Research, University of Alabama in Huntsville, Huntsville, AL35899, USA Department of Space Science and Center for Space Plasma and Aeronomic Research, University of Alabama in Huntsville, Huntsville, AL35899, USA
*
Email address for correspondence: [email protected]

Abstract

We investigate kinetic entropy-based measures of the non-Maxwellianity of distribution functions in plasmas, i.e. entropy-based measures of the departure of a local distribution function from an associated Maxwellian distribution function with the same density, bulk flow and temperature as the local distribution. First, we consider a form previously employed by Kaufmann & Paterson (J. Geophys. Res., vol. 114, 2009, A00D04), assessing its properties and deriving equivalent forms. To provide a quantitative understanding of it, we derive analytical expressions for three common non-Maxwellian plasma distribution functions. We show that there are undesirable features of this non-Maxwellianity measure including that it can diverge in various physical limits and elucidate the reason for the divergence. We then introduce a new kinetic entropy-based non-Maxwellianity measure based on the velocity-space kinetic entropy density, which has a meaningful physical interpretation and does not diverge. We use collisionless particle-in-cell simulations of two-dimensional anti-parallel magnetic reconnection to assess the kinetic entropy-based non-Maxwellianity measures. We show that regions of non-zero non-Maxwellianity are linked to kinetic processes occurring during magnetic reconnection. We also show the simulated non-Maxwellianity agrees reasonably well with predictions for distributions resembling those calculated analytically. These results can be important for applications, as non-Maxwellianity can be used to identify regions of kinetic-scale physics or increased dissipation in plasmas.

Type
Research Article
Copyright
Copyright © The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adhikari, L., Zank, G. P., Hunana, P., Shiota, D., Bruno, R., Hu, Q. & Telloni, D. 2017 II. Transport of nearly incompressible magnetohydrodynamic turbulence from 1 to 75 au. Astrophys. J. 841 (2), 85.CrossRefGoogle Scholar
Adhikari, L., Zank, G. P., Zhao, L.-L. & Webb, G. M. 2020 Evolution of entropy and mediation of the solar wind by turbulence. Astrophys. J. 891 (1), 34.CrossRefGoogle Scholar
Arzamasskiy, L., Kunz, M. W., Chandran, B. D. G. & Quataert, E. 2019 Hybrid-kinetic simulations of ion heating in Alfvénic turbulence. Astrophys. J. 879 (1), 53.CrossRefGoogle Scholar
Bandyopadhyay, R., Chasapis, A., Chhiber, R., Parashar, T. N., Maruca, B. A., Matthaeus, W. H., Schwartz, S. J., Eriksson, S., Le Contel, O., Breuillard, H., et al. 2018 Solar wind turbulence studies using MMS fast plasma investigation data. Astrophys. J. 866 (2), 81.CrossRefGoogle Scholar
Bellan, P. M. 2008 Fundamentals of Plasma Physics. Cambridge University Press.Google Scholar
Boltzmann, L. 1877 Über die beziehung dem zweiten haubtsatze der mechanischen wärmetheorie und der wahrscheinlichkeitsrechnung resp. dem sätzen über das wäarmegleichgewicht. Wiener Berichte 76, 373435, in (Boltzmann 1909) Vol. II, paper 42.Google Scholar
Burch, J. L., Moore, T. E., Torbert, R. B. & Giles, B. L. 2016 a Magnetospheric multiscale overview and science objectives. Space Sci. Rev. 199, 5.CrossRefGoogle Scholar
Burch, J. L., Torbert, R. B., Phan, T. D., Chen, L.-J., Moore, T. E., Ergun, R. E., Eastwood, J. P., Gershman, D. J., Cassak, P. A., Argall, M. R., et al. 2016 b Electron-scale measurements of magnetic reconnection in space. Science 352, 6290.CrossRefGoogle ScholarPubMed
Burgess, D., Möbius, E. & Scholer, M. 2012 Ion acceleration at the earth's bow shock. Space Sci. Rev. 173, 547.CrossRefGoogle Scholar
Cerri, S. S., Grošelj, D. & Franci, L. 2019 Kinetic plasma turbulence: recent insights and open questions from 3D3V simulations. Front. Astron. Space Sci. 6, 64.CrossRefGoogle Scholar
Cerri, S. S., Kunz, M. W. & Califano, F. 2018 Dual phase-space cascades in 3D hybrid-Vlasov–Maxwell turbulence. Astrophys. J. 856 (1), L13.CrossRefGoogle Scholar
Drake, J. F., Swisdak, M., Phan, T. D., Cassak, P. A., Shay, M. A., Lepri, S. T., Lin, R. P., Quataert, E. & Zurbuchen, T. H. 2009 Ion heating resulting from pickup in magnetic reconnection exhausts. J. Geophys. Res. 114, A05111.Google Scholar
Drake, J. F., Swisdak, M., Schoeffler, K. M., Rogers, B. N. & Kobayashi, S. 2006 Formation of secondary islands during magnetic reconnection. Geophys. Res. Lett. 33, L13105.CrossRefGoogle Scholar
Du, S., Zank, G. P., Li, X. & Guo, F. 2020 Energy dissipation and entropy in collisionless plasma. Phys. Rev. E 101, 033208.CrossRefGoogle ScholarPubMed
Egedal, J., Le, A. & Daughton, W. 2013 A review of pressure anisotropy caused by electron trapping in collisionless plasma, and its implications for magnetic reconnection. Phys. Plasmas 20, 061201.CrossRefGoogle Scholar
Eyink, G. L. 2018 Cascades and dissipative anomalies in nearly collisionless plasma turbulence. Phys. Rev. X 8, 041020.Google Scholar
Feldman, W. C., Bame, S. J., Gary, S. P., Gosling, J. T., McComas, D., Thomsen, M. F., Paschmann, G., Sckopke, N., Hoppe, M. M. & Russell, C. T. 1982 Electron heating within the earth's bow shock. Phys. Rev. Lett. 49, 199201.CrossRefGoogle Scholar
Fuselier, S. A., Petrinec, S. M., Sawyer, R. P., Mukherjee, J. & Masters, A. 2020 Suppression of magnetic reconnection at Saturn's low-latitude magnetopause. J. Geophys. Res. Space Phys. 125 (5), e2020JA027895.CrossRefGoogle Scholar
Gary, S. P., Zhao, Y., Hughes, R. S., Wang, J. & Parashar, T. N. 2018 Species entropies in the kinetic range of collisionless plasma turbulence: particle-in-cell simulations. Astrophys. J. 859 (2), 110.CrossRefGoogle Scholar
Gingell, I., Schwartz, S. J., Burgess, D., Johlander, A., Russell, C. T., Burch, J. L., Ergun, R. E., Fuselier, S., Gershman, D. J., Giles, B. L., et al. 2017 MMS observations and hybrid simulations of surface ripples at a marginally quasi-parallel shock. J. Geophys. Res. Space Phys. 122 (11), 1100311017.CrossRefGoogle Scholar
Goldman, M. V., Newman, D. L., Eastwood, J. P. & Lapenta, G. 2020 Multi-beam energy moments of multibeam particle velocity distributions. arXiv:2005.09113.Google Scholar
Goodrich, K. A., Ergun, R., Schwartz, S. J., Wilson, L. B. III, Newman, D., Wilder, F. D., Holmes, J., Johlander, A., Burch, J., Torbert, R., et al. 2018 MMS observations of electrostatic waves in an oblique shock crossing. J. Geophys. Res. Space Phys. 123 (11), 94309442.CrossRefGoogle Scholar
Gosling, J. T. 2007 Encyclopedia of the Solar Wind, chap. 12. Elsevier.Google Scholar
Greco, A., Valentini, F., Servidio, S. & Matthaeus, W. H. 2012 Inhomogeneous kinetic effects related to intermittent magnetic discontinuities. Phys. Rev. E 86 (6), 066405.CrossRefGoogle ScholarPubMed
Grošelj, D., Cerri, S. S., Navarro, A. B., Willmott, C., Told, D., Loureiro, N. F., Califano, F. & Jenko, F. 2017 Fully kinetic versus reduced-kinetic modeling of collisionless plasma turbulence. Astrophys. J. 847 (1), 28.CrossRefGoogle Scholar
Guo, X., Sironi, L. & Narayan, R. 2017 Electron heating in low-mach-number perpendicular shocks. I. Heating mechanism. Astrophys. J. 851 (2), 134.CrossRefGoogle Scholar
Hesse, M., Chen, L. J., Liu, Y.-H., Bessho, N. & Burch, J. L. 2017 Population mixing in asymmetric magnetic reconnection with a guide field. Phys. Rev. Lett. 118, 145101.CrossRefGoogle ScholarPubMed
Heyvaerts, J. & Priest, E. R. 1983 Coronal heating by phase-mixed shear Alfvén waves. Astron. Astrophys. 117, 220234.Google Scholar
Howes, G. G., Cowley, S. C., Dorland, W., Hammett, G. W., Quataert, E. & Schekochihin, A. A. 2006 Astrophysical gyrokinetics: basic equations and linear theory. Astrophys. J. 651 (1), 590.CrossRefGoogle Scholar
Hsu, J.-Y., Joyce, G. & Montgomery, D. 1974 Thermal relaxation of a two-dimensional plasma in a d.c. magnetic field. Part 2. Numerical simulation. J. Plasma Phys. 12 (1), 2731.CrossRefGoogle Scholar
Kaufmann, R. L. & Paterson, W. R. 2009 Boltzmann $h$ function and entropy in the plasma sheet. J. Geophys. Res. 114, A00D04.Google Scholar
Kaufmann, R. L. & Paterson, W. R. 2011 Entropy distribution in the plasma sheet. J. Geophys. Res. 116, A08206.Google Scholar
Kawazura, Y., Barnes, M. & Schekochihin, A. A. 2019 Thermal disequilibration of ions and electrons bycollisionless plasma turbulence. PNAS 116, 771.CrossRefGoogle ScholarPubMed
Klimchuk, J. A. 2006 On solving the coronal heating problem. Solar Phys. 234, 4177.CrossRefGoogle Scholar
Krommes, J. A. & Hu, G. 1994 The role of dissipation in the theory and simulations of homogeneous plasma turbulence, and resolution of the entropy paradox. Phys. Plasmas 1 (10), 32113238.CrossRefGoogle Scholar
Le, A., Egedal, J., Daughton, W., Fox, W. & Katz, N. 2009 Equations of state for collisionless guide-field reconnection. Phys. Rev. Lett. 102, 085001.CrossRefGoogle ScholarPubMed
Leubner, M. P. 2004 Fundamental issues on kappa-distributions in space plasmas and interplanetary proton distributions. Phys. Plasmas 11, 1308.CrossRefGoogle Scholar
Levy, R. H., Petschek, H. E. & Siscoe, G. L. 1964 Aerodynamic aspects of magnetospheric flow. AIAA J. 2, 2065.CrossRefGoogle Scholar
Liang, H., Cassak, P. A., Servidio, S., Shay, M. A., Drake, J. F., Swisdak, M., Argall, M. R., Dorelli, J. C., Scime, E. E., Matthaeus, W. H., et al. 2019 Decomposition of plasma kinetic entropy into position and velocity space and the use of kinetic entropy in particle-in-cell simulations. Phys. Plasmas 26 (8), 082903.CrossRefGoogle Scholar
Liang, H., Cassak, P. A., Swisdak, M. & Servidio, S. accepted Estimating effective collision frequency and kinetic entropy uncertainty in particle-in-cell simulations. J. Phys.: Conf. Ser.Google Scholar
Loureiro, N. F., Schekochihin, A. A. & Zocco, A. 2013 Fast collisionless reconnection and electron heating in strongly magnetized plasmas. Phys. Rev. Lett. 111, 025002.CrossRefGoogle ScholarPubMed
Matthaeus, W. H., Yang, Y., Wan, M., Parashar, T. N., Bandyopadhyay, R., Chasapis, A., Pezzi, O. & Valentini, F. 2020 Pathways to dissipation in weakly collisional plasmas. Astrophys. J. 891, 101.CrossRefGoogle Scholar
Matthaeus, W. H., Zank, G. P., Oughton, S., Mullan, D. J. & Dmitruk, P. 1999 a Coronal heating by magnetohydrodynamic turbulence driven by reflected low-frequency waves. Astrophys. J. Lett. 523 (1), L93.CrossRefGoogle Scholar
Matthaeus, W. H., Zank, G. P., Smith, C. W. & Oughton, S. 1999 b Turbulence, spatial transport, and heating of the solar wind. Phys. Rev. Lett. 82 (17), 3444.Google Scholar
McAndrews, H. J., Owen, C. J., Thomsen, M. F., Lavraud, B., Coates, A. J., Dougherty, M. K. & Young, D. T. 2008 Evidence for reconnection at Saturn's magnetopause. J. Geophys. Res. Space Phys. 113 (A4), A04210.CrossRefGoogle Scholar
Montgomery, D. & Nielson, C. W. 1970 Thermal relaxation in one- and two- dimensional plasma models. Phys. Fluids 13, 1405.CrossRefGoogle Scholar
Mouhot, C. & Villani, C. 2011 On landau damping. Acta Math. 207 (1), 29201.Google Scholar
Nakariakov, V. M., Ofman, L., DeLuca, E. E., Roberts, B. & Davila, J. M. 1999 Trace observation of damped coronal loop oscillations: implications for coronal heating. Science 285 (5429), 862864.CrossRefGoogle ScholarPubMed
Nakata, M., Watanabe, T.-H. & Sugama, H. 2012 Nonlinear entropy transfer via zonal flows in gyrokinetic plasma turbulence. Phys. Plasmas 19 (2), 022303.CrossRefGoogle Scholar
Nariyuki, Y. 2011 On entropy-maximized velocity distributions in circularly polarized finite amplitude Alfvén waves. Phys. Plasmas 18 (5), 052112.CrossRefGoogle Scholar
Ng, J., Egedal, J., Le, A., Daughton, W. & Chen, L.-J. 2011 Kinetic structure of the electron diffusion region in antiparallel magnetic reconnection. Phys. Rev. Lett. 106, 065002.Google ScholarPubMed
Numata, R. & Loureiro, N. F. 2015 Ion and electron heating during magnetic reconnection in weakly collisional plasmas. J. Plasma Phys. 81, 305810201.Google Scholar
Olivier, C. P., Engelbrecht, N. E. & Strauss, R. D. 2019 Permutation entropy analysis of magnetic field turbulence at 1au revisited. J. Geophys. Res. Space Phys. 124 (1), 418.CrossRefGoogle Scholar
Osmane, A., Dimmock, A. P. & Pulkkinen, T. I. 2019 Jensen-Shannon complexity and permutation entropy analysis of geomagnetic auroral currents. J. Geophys. Res. Space Phys. 124 (4), 25412551.Google Scholar
Parashar, T. N. & Gary, S. P. 2019 Dissipation of kinetic Alfvénic turbulence as a function of ion and electron temperature ratios. Astrophys. J. 882 (1), 29.CrossRefGoogle Scholar
Parashar, T. N., Matthaeus, W. H. & Shay, M. A. 2018 Dependence of kinetic plasma turbulence on plasma $\beta$. Astrophys. J. 864 (1), L21.Google Scholar
Parks, G. K., Lee, E., McCarthy, M., Goldstein, M., Fu, S. Y., Cao, J. B., Canu, P., Lin, N., Wilber, M., Dandouras, I., et al. 2012 Entropy generation across earth's collisionless bow shock. Phys. Rev. Lett. 106, 061102.Google Scholar
Pezzi, O. 2017 Solar wind collisional heating. J. Plasma Phys. 83 (3), 555830301.CrossRefGoogle Scholar
Pezzi, O., Perrone, D., Servidio, S., Valentini, F., Sorriso-Valvo, L. & Veltri, P. 2019 Proton-proton collisions in the turbulent solar wind: hybrid Boltzmann-Maxwell simulations. Astrophys. J. 887 (2), 208.Google Scholar
Pezzi, O., Valentini, F. & Veltri, P. 2016 Collisional relaxation of fine velocity structures in plasmas. Phys. Rev. Lett. 116, 145001.CrossRefGoogle ScholarPubMed
Pezzi, O., Liang, H., Juno, J., Cassak, P. A., Servidio, S., Vásconez, C. L., Sorriso-Valvo, L., Perrone, D., Roytershteyn, V., TenBarge, J., et al. in preparation Dissipation measures in weakly-collisional plasmas. J. Plasma Phys.Google Scholar
Rowan, M. E., Sironi, L. & Narayan, R. 2019 Electron and proton heating in transrelativistic guide field reconnection. Astrophys. J. 873 (1), 2.CrossRefGoogle Scholar
Sarazin, Y., Dif-Pradalier, G., Zarzoso, D., Garbet, X., Ghendrih, P. & Grandgirard, V. 2009 Entropy production and collisionless fluid closure. Plasma Phys. Control. Fusion 51, 115003.Google Scholar
Schekochihin, A. A., Cowley, S. C., Dorland, W., Hammett, G. W., Howes, G. G., Quataert, E. & Tatsuno, T. 2009 Astrophysical gyrokinetics: kinetic and fluid turbulent cascades in magnetized weakly collisional plasmas. Astrophys. J. Suppl. 182 (1), 310.Google Scholar
Servidio, S., Chasapis, A., Matthaeus, W. H., Perrone, D., Valentini, F., Parashar, T. N., Veltri, P., Gershman, D., Russell, C. T., Giles, B., et al. 2017 Magnetospheric multiscale observation of plasma velocity-space cascade: hermite representation and theory. Phys. Rev. Lett. 119 (20), 205101.Google ScholarPubMed
Slavin, J. A., Acuña, M. H., Anderson, B. J., Baker, D. N., Benna, M., Boardsen, S. A., Gloeckler, G., Gold, R. E., Ho, G. C., Korth, H., et al. 2009 Messenger observations of magnetic reconnection in Mercury's magnetosphere. Science 324 (5927), 606610.Google ScholarPubMed
Sonnerup, B. U. Ö. 1979 Magnetic field reconnection. In Solar System Plasma Physics (ed. Lanzerotti, L. J., Kennel, C. F. & Parker, E. N.), vol. 3, p. 46. North Halland Publishing Co.Google Scholar
Tatsuno, T., Dorland, W., Schekochihin, A. A., Plunk, G. G., Barnes, M., Cowley, S. C. & Howes, G. G. 2009 Nonlinear phase mixing and phase-space cascade of entropy in gyrokinetic plasma turbulence. Phys. Rev. Lett. 103 (1), 015003.Google ScholarPubMed
TenBarge, J. M. & Howes, G. G. 2013 Current sheets and collisionless damping in kinetic plasma turbulence. Astrophys. J. Lett. 771, L27.Google Scholar
Torbert, R. B., Burch, J. L., Phan, T. D., Hesse, M., Argall, M. R., Shuster, J., Ergun, R. E., Alm, L., Nakamura, R., Genestreti, K. J., et al. 2018 Electron-scale dynamics of the diffusion region during symmetric magnetic reconnection in space. Science 362 (6421), 13911395.Google ScholarPubMed
Vaivads, A., Retinó, A., Soucek, J., Khotyaintsev, Y. V., Valentini, F., Escoubet, C. P., Alexandrova, O., André, M., Bale, S. D., Balikhin, M., et al. 2016 Turbulence heating observer - satellite mission proposal. J. Plasma Phys. 82 (5).Google Scholar
Valentini, F., Perrone, D., Stabile, S., Pezzi, O., Servidio, S., De Marco, R., Marcucci, F., Bruno, R., Lavraud, B., De Keyser, J., et al. 2016 Differential kinetic dynamics and heating of ions in the turbulent solar wind. New J. Phys. 18 (12), 125001.CrossRefGoogle Scholar
Vasyliunas, V. M. 1983 Plasma Distribution and Flow (ed. A. J. Dessler), chap. 395. Cambridge University Press.CrossRefGoogle Scholar
Watanabe, T.-H. & Sugama, H. 2004 Kinetic simulation of steady states of ion temperature gradient driven turbulence with weak collisionality. Phys. Plasmas 11 (4), 14761483.CrossRefGoogle Scholar
Weck, P. J., Schaffner, D. A., Brown, M. R. & Wicks, R. T. 2015 Permutation entropy and statistical complexity analysis of turbulence in laboratory plasmas and the solar wind. Phys. Rev. E 91, 023101.CrossRefGoogle ScholarPubMed
Zank, G. P., Adhikari, L., Hunana, P., Tiwari, S. K., Moore, R., Shiota, D., Bruno, R. & Telloni, D. 2018 Theory and transport of nearly incompressible magnetohydrodynamic turbulence. IV. Solar coronal turbulence. Astrophys. J. 854 (1), 32.Google Scholar
Zeiler, A., Biskamp, D., Drake, J. F., Rogers, B. N., Shay, M. A. & Scholer, M. 2002 Three-dimensional particle simulations of collisionless magnetic reconnection. J. Geophys. Res. 107 (A), 1230.CrossRefGoogle Scholar
Zhdankin, V., Uzdensky, D. A., Werner, G. R. & Begelman, M. C. 2019 Electron and ion energization in relativistic plasma turbulence. Phys. Rev. Lett. 122, 055101.CrossRefGoogle ScholarPubMed