Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-12-04T19:38:03.336Z Has data issue: false hasContentIssue false

Jeans instability of a rotating partially ionized and strongly coupled plasma with Hall current

Published online by Cambridge University Press:  19 April 2016

Shweta Jain*
Affiliation:
Physics Department, Ujjain Engineering College, Ujjain, MP-456010, India
Prerana Sharma
Affiliation:
Physics Department, Ujjain Engineering College, Ujjain, MP-456010, India
*
Email address for correspondence: [email protected]

Abstract

A generalized hydrodynamic model is used to analyse the growth rate of the Jeans instability of a partially ionized strongly coupled plasma incorporating the effects of rotation and Hall current. The general dispersion relation is determined for the propagation of magnetohydrodynamic waves using the normal mode analysis theory. The general dispersion relation is further discussed in four different combinations of rotation and propagation of the system to signify the importance of rotation and neutral particles on the growth rates and conditions of Jeans instability in hydrodynamic and kinetic regimes. The different types of waves are also described in these cases. The influence of rotation and neutral particles on growth rate of the Jeans instability is analysed numerically and shown graphically. The possible applications of the present work are found in ultracold neutral plasmas, white dwarfs, neutron stars etc.

Type
Research Article
Copyright
© Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Argal, S., Tiwari, A. & Sharma, P. K. 2014 Jeans instability of a rotating self-gravitating viscoelastic fluid. Eur. Phys. Lett. 108, 35003‐p1.CrossRefGoogle Scholar
Binney, J. & Tremaine, S. 1987 Galactic Dynamics. Princeton University Press.Google Scholar
Cumming, A., Arras, P. & Zwieibel, E. 2004 Magnetic field evolution in neutron star crusts due to the Hall effect and Ohmic decay. Astrophys. J. 609, 999.CrossRefGoogle Scholar
Dhiman, J. S. & Sharma, R. 2014 Effect of rotation on the growth rate of magnetogravitational instability of a viscoelastic medium. Phys. Scr. 89, 125001.CrossRefGoogle Scholar
Frenkel, Y. I. 1946 Kinetic Theory of Liquids. Clarendon, Oxford University Press.Google Scholar
Ichimaru, S. 1982 Strongly coupled plasmas: high-density classical plasmas and degenerate electron liquids. Rev. Mod. Phys. 54, 1017.CrossRefGoogle Scholar
Janaki, M. S., Chakrabarti, N. & Benerjee, D. 2011 Jeans instability in a viscoelastic fluid. Phys. Plasmas 18, 012901.CrossRefGoogle Scholar
Kaw, P. K. & Sen, A. 1998 Low frequency modes in strongly coupled dusty plasmas. Phys. Plasmas 5, 3552.CrossRefGoogle Scholar
Killian, T. C., Kulin, S., Bergeson, S. D., Orozco, L. A., Orzel, C. & Rolston, S. L. 1999 Creation of an ultracold neutral plasma. Phys. Rev. Lett. 83, 4776.CrossRefGoogle Scholar
Killian, T. C., Pattard, T., Pohl, T. & Rost, J. M. 2007 Ultracold neutral plasmas. Phys. Rep. 449, 77.CrossRefGoogle Scholar
Mamun, A. A., Ashrafi, K. S. & Shukla, P. K. 2010 Effects of polarization force and effective dust temperature on dust-acoustic solitary and shock waves in a strongly coupled dusty plasma. Phys. Rev. E 82, 026405.CrossRefGoogle Scholar
Murillo, M. S. 2004 Strongly coupled plasma physics and high energy-density matter. Phys. Plasmas 11, 2964.CrossRefGoogle Scholar
Potekhin, A. Y. & Chabrier, G. 2000 Equation of state of fully ionized electron–ion plasmas. II. Extension to relativistic densities and to the solid phase. Phys. Rev. E 62, 8554.CrossRefGoogle Scholar
Prajapati, R. P. & Chhajlani, R. K. 2013 Self-gravitational instability in magnetized finitely conducting viscoelastic fluid. Astrophys. Space Sci. 344, 371.CrossRefGoogle Scholar
Prajapati, R. P. & Chhajlani, R. K. 2014 Effect of quantum corrections on the Jeans instability of self-gravitating viscoelastic dusty fluid. Astrophys. Space Sci. 350, 637.CrossRefGoogle Scholar
Rosenberg, M. & Kalman, G. 1997 Dust acoustic waves in strongly coupled dusty plasmas. Phys. Rev. E 56, 7166.CrossRefGoogle Scholar
Rosenberg, M. & Shukla, P. K. 2011 Instabilities in strongly coupled ultracold neutral plasmas. Phys. Scr. 83, 015503.CrossRefGoogle Scholar
Rudiger, G., Shalybkov, D. A., Schultz, M. & Mond, M. 2009 Tayler instability with Hall effect in young neutron stars. Astron. Nachr. 330, 12.CrossRefGoogle Scholar
Shahmansouri, M. & Mamun, A. A. 2014 Effects of obliqueness and strong electrostatic interaction on linear and nonlinear propagation of dust-acoutic waves in a magnetized strongly coupled dusty plasma. Phys. Plasmas 21, 033704.CrossRefGoogle Scholar
Sharma, P. 2014 Modified Jeans instability of strongly coupled inhomogeneous magneto dusty plasma in the presence of polarization force. Eur. Phys. Lett. 107, 15001.CrossRefGoogle Scholar
Sharma, P. & Chhajlani, R. K. 2014 Jeans self-gravitational instability of strongly coupled quantum plasma. Phys. Plasmas 21, 072104.CrossRefGoogle Scholar
Sharma, P. K., Argal, S., Tiwari, A. & Prajapati, R. P. 2015 Jeans instability of rotating viscoelastic fluid in the presence of magnetic field. Z. Naturforsch. 70, 39.CrossRefGoogle Scholar
Shukla, P. K., Mendis, D. A. & Krasheninnikov, S. I. 2011 Wave propagation in the magnetized cores of white dwarf stars with ultra-relativistic degenerate electrons. J. Plasma Phys. 77, 571575.CrossRefGoogle Scholar
Slattery, W. L., Doolen, G. D. & Dewitt, H. E. 1980 Improved equation of state for the classical one-component plasma. Phys. Rev. A 21, 2087.CrossRefGoogle Scholar
Van Horn, H. M. 1991 Dense astrophysical plasmas. Science 252, 384.CrossRefGoogle ScholarPubMed