Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-23T04:41:44.844Z Has data issue: false hasContentIssue false

Jeans instability in a magneto-radiative dusty plasma

Published online by Cambridge University Press:  01 December 2008

N. L. TSINTSADZE
Affiliation:
Institute of Physics, Tbilisi, Georgia Department of Physics, G. C. University, Lahore 54000, Pakistan ([email protected]) Salam Chair in Physics, G. C. University, Lahore 54000, Pakistan
ROZINA CHAUDHARY
Affiliation:
Department of Physics, G. C. University, Lahore 54000, Pakistan ([email protected]) Salam Chair in Physics, G. C. University, Lahore 54000, Pakistan
H. A. SHAH
Affiliation:
Department of Physics, G. C. University, Lahore 54000, Pakistan ([email protected])
G. MURTAZA
Affiliation:
Salam Chair in Physics, G. C. University, Lahore 54000, Pakistan

Abstract

The importance of thermal radiation on the Jeans instability is discussed for a magnetized dusty plasma with gravitational effects. The one-fluid MHD equations are developed by assuming that the entropy of each subsystem of plasma is conserved, when the temperature of the plasma species is non-relativistic. The dispersion relation in this case shows that thermal radiation helps to stabilize the Jeans instability. It is shown that the plasma is stable in a certain range of wavelengths. The magnetic field stabilizes the Jeans instability when the wave propagates across the magnetic field. However, for oblique propagation it is seen that the magnetic field does not stabilize the Jeans instability.

Type
Papers
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Avinash, K. and Shukla, P. K. 1994 Phys. Lett. A 189, 470.CrossRefGoogle Scholar
Chandrasekhar, S. 1957 An Introduction to the Study of Stellar Structure. New York, Dover Publications.Google Scholar
Cramer, N. F. and Verheest, F. 2005 Phys. Plasmas. 12, 082902.CrossRefGoogle Scholar
Ginsburg, V. L. 1970 Propagation of Electromagnetic Waves in Plasmas. 2nd edn.Oxford, Pergamon.Google Scholar
Landau, L. D. and Lifshitz, E. M. 1998 Statistical Physics, Part 1. Oxford, Butterworths–Heinemann.Google Scholar
Mamun, A. A. and Shukla, P. K. 2001 Phys. Plasmas. 8, 3513.CrossRefGoogle Scholar
Mendis, D. A. 2002 Plasma Sources Sci. Technol. 11, A219.CrossRefGoogle Scholar
Morfill, G. E., Tsytovich, V. N. and Thomas, H. 2003 Plasma. Phys. Rep. 29, 2901.CrossRefGoogle Scholar
Shukla, P. K. and Mamun, A. A. 2002 Introduction to Dusty Physics Plasma. Bristol, Institute of Physics.CrossRefGoogle Scholar
Shukla, P. K. and Stenflo, L. 2006a, Proc. Royal Soc. 462, 403.Google Scholar
Shukla, P. K. and Stenflo, L. 2006b, Phys. Lett. A 355, 378.CrossRefGoogle Scholar
Tsintsadze, L. N. 1995 Phys. Plasmas. 2, 4462.CrossRefGoogle Scholar
Tsintsadze, L. N., Callebaut, D. K. and Tsintsadze, N. L. 1996 J. Plasma Phys. 55, 407.CrossRefGoogle Scholar
Tsintsadze, N. L., Mendonca, J. T., Shukla, P. K., Stenflo, L. and Mahmoodi, J. 2000 Phys. Scr. 62, 70.CrossRefGoogle Scholar
Tsintsadze, N. L., Murtaza, G. and Ehsan, Z. 2006a Phys. Plasmas. 13, 022103.CrossRefGoogle Scholar
Tsintsadze, N. L., Ehsan, Z., Shah, H. A. and Murtaza, G. 2006b Phys. Plasmas. 13, 072103.CrossRefGoogle Scholar
Tsintsadze, N. L., Chaudhary, R., Shah, H. A. and Murtaza, G. 2007 Phys. Plasmas 14, 073703.CrossRefGoogle Scholar
Tsytovich, V. N., Morfill, G. E. and Thomas, H. 2002 Plasma. Phys. Rep. 28, 623.CrossRefGoogle Scholar
Verheest, F. 2000 Waves in Dusty Space Plasmas. Dordrecht, Kluwer Academic.CrossRefGoogle Scholar
Verheest, F., Hellberg, M. A. and Mace, R. L. 1999 Phys. Plasmas. 6, 279.CrossRefGoogle Scholar
Zeldovich, Ya. and Raizer, Yu. 1966 Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena, Vol. 2 (Ed. Hayes, W. D. and Protstein, R. F.). New York, Academic Press.Google Scholar