Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-12-04T19:37:52.276Z Has data issue: false hasContentIssue false

Ion-acoustic double layers in electron–positron–ion plasmas with finite ion temperature

Published online by Cambridge University Press:  05 March 2013

S. K. JAIN
Affiliation:
Department of Physics, University of Rajasthan, Jaipur 302004, India ([email protected])
M. K. MISHRA
Affiliation:
Department of Physics, University of Rajasthan, Jaipur 302004, India ([email protected])

Abstract

The large-amplitude ion-acoustic double layers in a collisionless plasma consisting of isothermal positrons, warm adiabatic ions and two-temperature distribution of electrons are investigated. Using the pseudo-potential approach, an energy-integral equation for the system has been derived which encompasses complete nonlinearity for the plasma system. The existence region of the double layers is analyzed numerically. It is found that for a selected set of physical parameters, the rarefactive double layer exists in the electron–positron–ion plasma. It is found that the existence regime of the double layer is very sensitive to the plasma parameters, e.g. cold electron concentration (μ) and temperature ratio of two electron species (β). An increase in the finite ion temperature ratio increases the amplitude of the rarefactive double layer. To study small-amplitude double layers, we have expanded the Sagdeev potential. In the case of small amplitude, it is found that the amplitude of the double layer increases with increase in ion temperature ratio (σ) and cold electron concentration (μ). However increase in positron concentration (α) and temperature ratio of positrons to electrons (γ) decreases the amplitude of the double layer. The effect of various plasma parameters on the characteristics of the double layers is discussed in detail. The results of the investigation may be helpful to understanding basic plasma characteristics in space.

Type
Papers
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahedo, E. and Sanchez, M. M. 2008 44th AIAA Joint Propulsion Conference and Exihibit, Hartford, CT, AIAA 20085005.Google Scholar
Akhtar, N. and Mahmood, S. 2011 Phys. Plasmas 18, 112506.CrossRefGoogle Scholar
Alfvén, H. 1958 Tellus 10, 104.CrossRefGoogle Scholar
Alfvén, H. and Carlqvist, P. 1967 Solar Phys. 1, 220.CrossRefGoogle Scholar
Baldwin, D. E. and Logan, B. G. 1979 Phys. Rev. Lett. 43, 1318.CrossRefGoogle Scholar
Bharuthram, R. and Shukla, P. K. 1986 Phys. Fluids 29, 3214.CrossRefGoogle Scholar
Block, L. P. 1978 Astrophys. Space Sci. 55, 59.CrossRefGoogle Scholar
Borovsky, J. E. and Joyce, G. J. 1983 Plasma Phys. 29, 45.CrossRefGoogle Scholar
Buti, B. 1980 Phys. Lett. A 76, 251.CrossRefGoogle Scholar
Chatterjee, P., Saha, T., Muniandy, S. V., Wong, C. S. and Roychoudhary, R. K. 2010 Phys. Plasmas 17, 012106.CrossRefGoogle Scholar
Delory, G. T., Ergun, R. E., Carlson, C. W., Muschietti, L., Chaston, C. C., Peria, W., McFadden, J. P. and Strangeway, R. 1998 Geophys. Res. Lett. 25, 2069.CrossRefGoogle Scholar
Ergun, R. E., Carlson, C. W., McFadden, J. P., Mozer, F. S., Delory, G. T., Peria, W., Chaston, C. C., Temerin, M., Elphic, R., Strangeway, R., Pfaff, R., Cattell, C. A., Klumpar, D., Shelley, E., Peterson, W., Moebius, E. and Kistler, L. 1998 Geophys. Res. Lett. 25, 2061.CrossRefGoogle Scholar
Ergun, R. E., Andersson, L., Tao, J., Angelopoulos, V., Bonnell, J., McFadden, J. P., Larson, D. E., Eriksson, S., Johansson, T., Cully, C. M., Newman, D. N., Goldman, M. V., Roux, A., Lecontel, O., Glassmeier, K.–H. and Baumjohann, W. 2009 Phys. Rev. Lett. 102, 155002.CrossRefGoogle Scholar
Fowler, T. K. and Logan, B. G. 1977 Comments Plasma Phys. Control Fusion 2, 67; Phys. Fluids 22, 1171.Google Scholar
Gibbons, G. W., Hawking, S. W. and Siklos, S. (Eds.) 1983 The Very Early Universe, Cambridge: Cambridge University Press.Google Scholar
Goertz, C. K. and Borovsky, J. E. 1983 In: High-latitude Space Plasma Physics (ed. Hultqvist, B. and Hagfors, T.). Plenum Publishing, Plennum Press, New York, pp. 469492.CrossRefGoogle Scholar
Goswami, K. S. and Bujarbarua, S. 1985 Phys. Lett. A 108, 149.CrossRefGoogle Scholar
Hairapetian, G. and Stenzel, R. L. 1991 Phys. Fluids B 3, 899.CrossRefGoogle Scholar
Hershkowitz, N. 1994 IEEE Trans. Plasma Sci. 22, 11.CrossRefGoogle Scholar
Hirotani, K., Iguchi, S., Kimura, M. and Wajima, K. 1999 Publ. Astron. Soc. Jpn. 51, 263.CrossRefGoogle Scholar
Jones, W. D., Lee, A., Gleman, S. M. and Doucet, H. J. 1975 Phys. Rev. Lett. 35, 1349.CrossRefGoogle Scholar
Kurihara, K., Saito, T., Kiwamoto, Y. and Miyoshi, S. 1989 J. Phys. Soc. Jpn. 58, 3453.CrossRefGoogle Scholar
Lakhina, G. S., Singh, S. V., Kakad, A. P., Verheest, F. and Bharuthram, R. 2008 Nonlin. Processes Geophys. 15, 903.CrossRefGoogle Scholar
Lightman, A. P. 1982 Astrophys. J. 253, 842.CrossRefGoogle Scholar
Lipschultz, B., Labombard, B., Manning, H. L., Terry, J. L., Knowlton, S., Marmar, E. S., Porkolab, M., Rice, J., Takase, Y., Texter, S.et al., 1986 Nucl. Fusion 26, 1463.CrossRefGoogle Scholar
McFadden, J. P., Carlson, C. W., Ergun, R. E., Mozer, F. S., Muschietti, L., Roth, I. and Mobius, J. 2003 J. Geophys. Res. 108, 8018.CrossRefGoogle Scholar
Michel, F. C. 1982 Rev. Mod. Phys. 54, 1.CrossRefGoogle Scholar
Michel, F. C. 1991 Theory of Neutron Star Magnetosphere, Chicago, IL: Chicago University.Google Scholar
Miller, H. R. and Witta, P. J. 1987 Active Galactic Nuclei. Berlin: Springer, p. 202.Google Scholar
Mishra, M. K., Tiwari, R. S. and Jain, S. K. 2007 Phys. Rev. E 76, 034601.Google Scholar
Nishida, Y. and Nagasawa, T. 1986 Phys. Fluids 29, 345.CrossRefGoogle Scholar
Nishihara, K. and Tajiri, M. 1981 J. Phys. Soc. Jpn. 50, 4047.CrossRefGoogle Scholar
Oleson, N. L. and Found, G. C. 1949 J. Appl. Phys. 20, 416.CrossRefGoogle Scholar
Pakzad, H. R. and Tribeche, M. 2012 J. Fusion Energy 31, 611.CrossRefGoogle Scholar
Pottelette, R., Ergun, R. E., Treumann, R. A., Berthomier, M., Carlson, C. W., McFadden, J. P. and Roth, I. 1999 Geophys. Res. Lett. 26, 2629.CrossRefGoogle Scholar
Reynolds, C. S., Fabian, A. C., Celotti, A. and Rees, M. J. 1996 Mon. Not. R. Astron. Soc. 283, 873.CrossRefGoogle Scholar
Sabry, R. 2009 Phys. Plasmas 16, 072307.CrossRefGoogle Scholar
Sagdeev, R. Z. 1966 In: Review of Plasma Physics, Vol. 4, (ed. Leontovich, M. A.). New York: Consultants Bureau. pp. 2391.Google Scholar
Sheridan, T. E., Goeckner, M. J. and Goree, J. 1991 J. Vac. Sci. Technol. A 9 (3), 688.CrossRefGoogle Scholar
Singh, N. 1982 Plasma Phys. 24, 639.CrossRefGoogle Scholar
Surko, C. M., Lemvethal, M., Crane, W. S., Passner, A., Wyocki, F. J., Murphy, P. J., Strachan, J. and Rowan, W. L. 1986 Rev. Sci. Instrum. 57, 1862.CrossRefGoogle Scholar
Surko, C. M. and Murphy, T. 1990 Phys. Fluids B 2, 1372.CrossRefGoogle Scholar
Temerin, M., Cerny, K., Lotko, W. and Mozer, F. S. 1982 Phys. Rev. Lett. 48, 1175.CrossRefGoogle Scholar
Yadav, L. L. and Sharma, S. R. 1991 Phys. Scr. 43, 106.CrossRefGoogle Scholar
Zdziarski, A. A. 1987 Astrophys. J. 335, 786.CrossRefGoogle Scholar