No CrossRef data available.
Published online by Cambridge University Press: 13 March 2009
This paper uses the general solution of the linearized initial-value problem for an unbounded, exponentially-stratified, perfectly-conducting Couette flow in the presence of a uniform magnetic field to study the development of localized wave-type perturbations to the basic flow. The two-dimensional problem is shown to be stable for all hydrodynamic Richardson numbers JH, positive and negative, and wave packets in this flow are shown to approach, asymptotically, a level in the fluid (the ‘isolation level’) which is a smooth, continuous, function of JH that is well defined for JH < 0 as well as JH > 0. This system exhibits a rich complement of wave phenomena and a variety of mechanisms for the transport of mean flow kinetic and potential energy, via linear wave processes, between widely-separated regions of fluid; this in addition to the usual mechanisms for the absorption of the initial wave energy itself. The appropriate three-dimensional system is discussed, and the role of nonlinearities on the development of localized disturbances is considered.