Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-12T11:21:19.376Z Has data issue: false hasContentIssue false

Imposed magnetic field and hot electron propagation in inertial fusion hohlraums

Published online by Cambridge University Press:  02 December 2015

David J. Strozzi*
Affiliation:
Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
L. J. Perkins
Affiliation:
Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
M. M. Marinak
Affiliation:
Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
D. J. Larson
Affiliation:
Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
J. M. Koning
Affiliation:
Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
B. G. Logan
Affiliation:
Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
*
Email address for correspondence: [email protected]

Abstract

The effects of an imposed, axial magnetic field $B_{z0}$ on hydrodynamics and energetic electrons in inertial confinement fusion indirect-drive hohlraums are studied. We present simulations from the radiation-hydrodynamics code HYDRA of a low-adiabat ignition design for the National Ignition Facility, with and without $B_{z0}=70~\text{T}$ . The field’s main hydrodynamic effect is to significantly reduce electron thermal conduction perpendicular to the field. This results in hotter and less dense plasma on the equator between the capsule and hohlraum wall. The inner laser beams experience less inverse bremsstrahlung absorption before reaching the wall. The X-ray drive is thus stronger from the equator with the imposed field. We study superthermal, or ‘hot’, electron dynamics with the particle-in-cell code ZUMA, using plasma conditions from HYDRA. During the early-time laser picket, hot electrons based on two-plasmon decay in the laser entrance hole (Regan et al., Phys. Plasmas, vol. 17(2), 2010, 020703) are guided to the capsule by a 70 T field. Twelve times more energy deposits in the deuterium–tritium fuel. For plasma conditions early in peak laser power, we present mono-energetic test-case studies with ZUMA  as well as sources based on inner-beam stimulated Raman scattering. The effect of the field on deuterium–tritium deposition depends strongly on the source location, namely whether hot electrons are generated on field lines that connect to the capsule.

Type
Research Article
Copyright
© Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Chang, P. Y., Fiksel, G., Hohenberger, M., Knauer, J. P., Betti, R., Marshall, F. J., Meyerhofer, D. D., Séguin, F. H. & Petrasso, R. D. 2011 Fusion yield enhancement in magnetized laser-driven implosions. Phys. Rev. Lett. 107 (3), 035006.Google Scholar
Clark, D. S., Marinak, M. M., Weber, C. R., Eder, D. C., Haan, S. W., Hammel, B. A., Hinkel, D. E., Jones, O. S., Milovich, J. L., Patel, P. K. et al. 2015 Radiation hydrodynamics modeling of the highest compression inertial confinement fusion ignition experiment from the National Ignition Campaign. Phys. Plasmas 22 (2), 022703.Google Scholar
Dewald, E. et al. 2015 Phys. Rev. Lett. (submitted).Google Scholar
Dewald, E. L., Thomas, C., Hunter, S., Divol, L., Meezan, N., Glenzer, S. H., Suter, L. J., Bond, E., Kline, J. L., Celeste, J. et al. 2010 Hot electron measurements in ignition relevant hohlraums on the National Ignition Facility. Rev. Sci. Instrum. 81 (10), 10D938.Google Scholar
Döppner, T., Thomas, C. A., Divol, L., Dewald, E. L., Celliers, P. M., Bradley, D. K., Callahan, D. A., Dixit, S. N., Harte, J. A., Glenn, S. M. et al. 2012 Direct measurement of energetic electrons coupling to an imploding low-adiabat inertial confinement fusion capsule. Phys. Rev. Lett. 108, 135006.Google Scholar
Epperlein, E. M. & Haines, M. G. 1986 Plasma transport coefficients in a magnetic field by direct numerical solution of the Fokker–Planck equation. Phys. Fluids 29 (4), 10291041.CrossRefGoogle Scholar
Fujioka, S., Zhang, Z., Ishihara, K., Shigemori, K., Hironaka, Y., Johzaki, T., Sunahara, A., Yamamoto, N., Nakashima, H., Watanabe, T. et al. 2013 Kilotesla magnetic field due to a capacitor-coil target driven by high power laser. Sci. Rep. 3, 1170.Google Scholar
Grandy, J. 1999 Conservative remapping and region overlays by intersecting arbitrary polyhedra. J. Comput. Phys. 148 (2), 433466.CrossRefGoogle Scholar
Haan, S. W., Lindl, J. D., Callahan, D. A., Clark, D. S., Salmonson, J. D., Hammel, B. A., Atherton, L. J., Cook, R. C., Edwards, M. J., Glenzer, S. et al. 2011 Point design targets, specifications, and requirements for the 2010 ignition campaign on the National Ignition Facility. Phys. Plasmas 18 (5), 051001.Google Scholar
Hohenberger, M., Albert, F., Palmer, N. E., Lee, J. J., Döppner, T., Divol, L., Dewald, E. L., Bachmann, B., MacPhee, A. G., LaCaille, G. et al. 2014 Time-resolved measurements of the hot-electron population in ignition-scale experiments on the National Ignition Facility. Rev. Sci. Instrum. 85 (11), 11D501.CrossRefGoogle ScholarPubMed
Hohenberger, M., Chang, P.-Y., Fiksel, G., Knauer, J. P., Betti, R., Marshall, F. J., Meyerhofer, D. D., Séguin, F. H. & Petrasso, R. D. 2012 Inertial confinement fusion implosions with imposed magnetic field compression using the omega laser. Phys. Plasmas 19 (5), 056306.Google Scholar
Jones, O. S., Cerjan, C. J., Marinak, M. M., Milovich, J. L., Robey, H. F., Springer, P. T., Benedetti, L. R., Bleuel, D. L., Bond, E. J., Bradley, D. K. et al. 2012 A high-resolution integrated model of the national ignition campaign cryogenic layered experiments. Phys. Plasmas 19 (5), 056315.Google Scholar
Jones, R. D. & Mead, W. C. 1986 The physics of burn in magnetized deuterium–tritium plasmas. Nucl. Fusion 26 (2), 127137.Google Scholar
Koning, J., Kerbel, G. & Marinak, M. 2006 Resistive MHD in HYDRA using vector finite elements on 3D ALE structured hexagonal meshes. Bull. Am. Phys. Soc. 51 (7).Google Scholar
Larson, D., Tabak, M. & Ma, T. 2010 Hybrid simulations for magnetized fast ignition targets and analyzing cone-wire experiments. Bull. Am. Phys. Soc. 55 (15).Google Scholar
Lee, Y. T. & More, R. M. 1984 An electron conductivity model for dense plasmas. Phys. Fluids 27 (5), 12731286.CrossRefGoogle Scholar
Marinak, M. M., Kerbel, G. D., Gentile, N. A., Jones, O., Munro, D., Pollaine, S., Dittrich, T. R. & Haan, S. W. 2001 Three-dimensional HYDRA simulations of National Ignition Facility targets. Phys. Plasmas 8 (5), 22752280.Google Scholar
Michel, P., Divol, L., Dewald, E. L., Milovich, J. L., Hohenberger, M., Jones, O. S., Hopkins, L. B., Berger, R. L., Kruer, W. L. & Moody, J. D. 2015 Multibeam stimulated raman scattering in inertial confinement fusion conditions. Phys. Rev. Lett. 115, 055003.Google Scholar
Michel, P., Divol, L., Williams, E. A., Weber, S., Thomas, C. A., Callahan, D. A., Haan, S. W., Salmonson, J. D., Dixit, S., Hinkel, D. E. et al. 2009 Tuning the implosion symmetry of ICF targets via controlled crossed-beam energy transfer. Phys. Rev. Lett. 102 (2), 025004.CrossRefGoogle ScholarPubMed
Montgomery, D. S., Albright, B. J., Barnak, D. H., Chang, P. Y., Davies, J. R., Fiksel, G., Froula, D. H., Kline, J. L., MacDonald, M. J., Sefkow, A. B. et al. 2015 Use of external magnetic fields in hohlraum plasmas to improve laser-coupling. Phys. Plasmas 22 (1), 010703.Google Scholar
Moody, J. D., Callahan, D. A., Hinkel, D. E., Amendt, P. A., Baker, K. L., Bradley, D., Celliers, P. M., Dewald, E. L., Divol, L., Döppner, T. et al. 2014 Progress in hohlraum physics for the National Ignition Facility. Phys. Plasmas 21 (5), 056317.Google Scholar
Perkins, L. J., Logan, B. G., Zimmerman, G. B. & Werner, C. J. 2013 Two-dimensional simulations of thermonuclear burn in ignition-scale inertial confinement fusion targets under compressed axial magnetic fields. Phys. Plasmas 20 (7), 072708.Google Scholar
Perkins, L. J., Strozzi, D. J., Rhodes, M. A., Logan, B. G., Ho, D. D. & Hawkins, S. A. 2014 The application of imposed magnetic fields to ignition and thermonuclear burn on the National Ignition Facility. Bull. Am. Phys. Soc. 59 (15).Google Scholar
Pollock, B., Turnbull, D., Ross, S., Hazi, A., Ralph, J., LePape, S., Froula, D., Heberberger, D. & Moody, J. 2014 Laser-generated magnetic fields in quasi-hohlraum geometries. Bull. Am. Phys. Soc. 59 (15).Google Scholar
Regan, S. P., Meezan, N. B., Suter, L. J., Strozzi, D. J., Kruer, W. L., Meeker, D., Glenzer, S. H., Seka, W., Stoeckl, C., Glebov, V. Yu. et al. 2010 Suprathermal electrons generated by the two-plasmon-decay instability in gas-filled hohlraums. Phys. Plasmas 17 (2), 020703.CrossRefGoogle Scholar
Rhodes, M. A., Perkins, L. J. & Logan, B. G.2015 MAGNIFICO: a system for high-field magnetized inertial fusion at the National Ignition Facility. IEEE Trans. Plasma Sci. (submitted).Google Scholar
Robey, H. F., Celliers, P. M., Moody, J. D., Sater, J., Parham, T., Kozioziemski, B., Dylla-Spears, R., Ross, J. S., LePape, S., Ralph, J. E. et al. 2014 Shock timing measurements and analysis in deuterium–tritium-ice layered capsule implosions on NIF. Phys. Plasmas 21 (2), 022703.Google Scholar
Robinson, A. P. L., Strozzi, D. J., Davies, J. R., Gremillet, L., Honrubia, J. J., Johzaki, T., Kingham, R. J., Sherlock, M. & Solodov, A. A. 2014 Theory of fast electron transport for fast ignition. Nucl. Fusion 54 (5), 054003.Google Scholar
Rosen, M. D., Scott, H. A., Hinkel, D. E., Williams, E. A., Callahan, D. A., Town, R. P. J., Divol, L., Michel, P. A., Kruer, W. L., Suter, L. J. et al. 2011 The role of a detailed configuration accounting (DCA) atomic physics package in explaining the energy balance in ignition-scale hohlraums. High Energy Density Phys. 7 (3), 180190.Google Scholar
Salmonson, J. D., Haan, S. W., Meeker, D. J., Thomas, C. A., Robey, H. F., Suter, L. J. & Dewald, E. 2010 Assessing NIF ignition capsule performance sensitivity to hot electrons. Bull. Am. Phys. Soc. 55 (15).Google Scholar
Slutz, S. A. & Vesey, R. A. 2012 High-gain magnetized inertial fusion. Phys. Rev. Lett. 108, 025003.CrossRefGoogle ScholarPubMed
Strozzi, D. J., Tabak, M., Larson, D. J., Divol, L., Kemp, A. J., Bellei, C., Marinak, M. M. & Key, M. H. 2012 Fast-ignition transport studies: realistic electron source, integrated particle-in-cell and hydrodynamic modeling, imposed magnetic fields. Phys. Plasmas 19 (7), 072711.CrossRefGoogle Scholar