Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-23T18:15:38.458Z Has data issue: false hasContentIssue false

Higher-order approximations for the growth rate of the Weibel instability in strongly anisotropic plasmas

Published online by Cambridge University Press:  13 March 2009

Masumi Sato
Affiliation:
Department of Electrical Engineering, Yamagata University, Yonezawa 992, Japan

Abstract

Simple higher-order approximations for the linear growth rate γ(k) of the electron Weibel instability are obtained by using fractional approximations for the plasma dispersion function. Approximate expressions for γ(k) are found that are valid in the regions T/T < 5 and T/T > 120 (where T and T are perpendicular and parallel electron temperatures respectively).

Type
Research Article
Copyright
Copyright © Cambridge University Press 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Donoso, G. & Martín, P. 1985 J. Math. Phys. 26, 1186.CrossRefGoogle Scholar
Fried, B. D. & Conte, S. D. 1961 The Plasma Dispersion Function. Academic.Google Scholar
Krall, N. A. & Trivelpiece, A. W. 1973 Principles of Plasma Physics. McGraw-Hill.Google Scholar
McCabe, J. H. 1984 J. Plasma Phys. 25, 479.CrossRefGoogle Scholar
Martín, P. & Donoso, G. 1980 J. Math. Phys. 21, 280.Google Scholar
Németh, G., Ág, A. & Páris, G. 1981 J. Math. Phys. 22, 1192.Google Scholar
Okada, T., Yabe, T. & Niu, K. 1978 J. Plasma Phys. 20, 405.Google Scholar
Robinson, P. A. & Newman, D. L. 1988 J. Plasma Phys. 40, 553.Google Scholar
Sato, M. 1984 J. Plasma Phys. 31, 325.CrossRefGoogle Scholar
True, M. A. 1985 Phys. Fluids, 28, 2597.Google Scholar
Wallace, J. M., Brackbill, J. U., Cranfill, C. W., Forslund, D. W. & Mason, R. J. 1987 Phys. Fluids, 30, 1085.Google Scholar