Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-28T13:26:53.946Z Has data issue: false hasContentIssue false

The HelCat basic plasma science device

Published online by Cambridge University Press:  14 November 2014

M. Gilmore*
Affiliation:
Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, NM 87131, USA
A. G. Lynn
Affiliation:
Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, NM 87131, USA
T. R. Desjardins
Affiliation:
Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, NM 87131, USA
Y. Zhang
Affiliation:
Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, NM 87131, USA
C. Watts
Affiliation:
Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, NM 87131, USA ITER Organization, St. Paul-lès-Durance, France
S. C. Hsu
Affiliation:
Los Alamos National Laboratory, Los Alamos, NM 87545, USA
S. Betts
Affiliation:
Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, NM 87131, USA
R. Kelly
Affiliation:
Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, NM 87131, USA
E. Schamiloglu
Affiliation:
Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, NM 87131, USA
*
Email address for correspondence: [email protected]

Abstract

The Helicon-Cathode(HelCat) device is a medium-size linear experiment suitable for a wide range of basic plasma science experiments in areas such as electrostatic turbulence and transport, magnetic relaxation, and high power microwave (HPM)-plasma interactions. The HelCat device is based on dual plasma sources located at opposite ends of the 4 m long vacuum chamber – an RF helicon source at one end and a thermionic cathode at the other. Thirteen coils provide an axial magnetic field B ⩾ 0.220 T that can be configured individually to give various magnetic configurations (e.g. solenoid, mirror, cusp). Additional plasma sources, such as a compact coaxial plasma gun, are also utilized in some experiments, and can be located either along the chamber for perpendicular (to the background magnetic field) plasma injection, or at one of the ends for parallel injection. Using the multiple plasma sources, a wide range of plasma parameters can be obtained. Here, the HelCat device is described in detail and some examples of results from previous and ongoing experiments are given. Additionally, examples of planned experiments and device modifications are also discussed.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alfvén, H., Lindberg, L. and Mitlid, P. 1960 Experiments with plasma rings. J. Nucl. Energy C 1 (3), 116.Google Scholar
Bieber, T. Glad, X., de Poucques, L., Hugon, R., Vasseur, J.-L., Bougdira, J. 2013 Argon ion and neutral metastable levels destruction in a magnetically enhanced inductively coupled plasma reactor. Open Plasma Phys. J. 6, 32.Google Scholar
Brown, M. R. and Bellan, P. M. 1990 a Current drive by spheromak injection into a tokamak. Phys. Rev. Lett. 64 (18), 2144.Google Scholar
Brown, M. R. and Bellan, P. M. 1990 b Spheromak injection into a tokamak. Phys. Fluids B 2 (6), 1306.Google Scholar
Burin, M. J., Tynan, G. R., Antar, G. Y., Crocker, N. A. and Holland, C. 2005 On the transition to drift turbulence in a magnetized plasma column. Phys. Plasmas 12, 052 320.CrossRefGoogle Scholar
Chen, F. F. 1965 Electric probes. In: Plasma Diagnostic Techniques, (ed. Huddleston, R. H. and Leonard, S. L.). New York: Academic Press.Google Scholar
Chen, F. F. 2006 Introduction to Plasma Physics and Controlled Fusion, 2nd edn., Vol. 1. New York: Springer.Google Scholar
Chen, F. F. and Arnush, D. 1997 Generalized theory of helicon waves. I. normal modes. Phys. Plasmas 4 (9), 3411.Google Scholar
Chiang, F. C., Pribyl, P., Gekelman, W., Lefebvre, B., Chen, Li-Jen and Judy, J. W. 2011 Microfabricated flexible electrodes for multiaxis sensing in the large plasma device at UCLA. IEEE Trans. Plasma Sci. 39 (6), 1507.Google Scholar
Desjardins, T. R. and Gilmore, M. 2014 Phys. Plasmas (submitted).Google Scholar
Desjardins, T. R., Gilmore, M., Reynolds-Barredo, J. M. and Fisher, D. 2014 Phys. Plasmas (submitted).Google Scholar
Fasoli, A., Labit, B., McGrath, M. et al. 2006 Electrostatic turbulence and transport in a simple magnetized plasma. Phys. Plasmas 13, 055 902.Google Scholar
Fujita, H., Yaura, S., Harada, T. and Matsup, H. 1987 Observation of potential relaxation instability in a bounded discharge plasma. IEEE Trans. Plasma Sci. PS–15 (4), 445.Google Scholar
Geddess, C. G. R., Kornack, T. W. and Brown, M. R. 1998 Scaling studies of spheromak formation and equilibrium. Phys. Plasmas 5, 1027.Google Scholar
Gekelman, W., Pfister, H., Lucky, A., Bamber, J., Leneman, D. and Maggs, J. 1991 Design, construction, and properties of the large plasma research device – the LAPD at UCLA. Rev. Sci. Instrum. 62 (12), 2875.Google Scholar
Gyergyekt, T., CerEek, M., Stanojevic, M. and Jelids, N. 1994 An investigation of the electrode current oscillations caused by the potential relaxation instability in a weakly magnetized discharge plasma. J. Phys. D: Appl. Phys. 27, 2080.Google Scholar
Hershkowitz, N. 1989 How Langmuir probes work. In: Plasma Diagnostics: Discharge Parameters and Chemistry, (ed. Auciello, O. and Falmm, D. L.). New York: Academic Press.Google Scholar
Hsu, S. C. and Bellan, P. M. 2005 On the jets, kinks, and spheromaks formed by a planar magnetized coaxial gun. Phys. Plasmas 12 (3), 032 103.Google Scholar
Iizuka, S., Michelson, P., Ramussen, J. J. and Schrittwiser, R. 1982 Dynamics of a potential barrier formed on the tail of a moving double layer in a collisionless plasma. Phys. Rev. Lett. 48 (3), 145.Google Scholar
Jassby, D. L. 1972 Transverse velocity shear instabilities within a magnetically confined plasma. Phys. Fluids 15 (9), 1590.Google Scholar
Kaw, P. W. and Dawson, J. M. 1969 Laser-induced anomalous heating of a plasma. Phys. Fluids 12, 2586.Google Scholar
Kronberg, P. P., Dufton, Q. W., Li, H. and Colgate, S. A. 2001 Magnetic energy of the intergalactic medium from galactic black holes. Astrophys. J. 560, 178.Google Scholar
Leneman, D., Gekelman, W. and Maggs, J. 2006 The plasma source of the large plasma device at University of California, Los Angeles. Rev. Sci. Instrum. 77, 015 108.Google Scholar
Light, M. and Chen, F. F. 1995 Helicon wave excitation with helical antennas. Phys. Plasmas 2 (4), 1084.Google Scholar
Liu, W., Hsu, S. C. and Li, H. 2009 Ideal magnetohydrodynamic simulations of low beta compact toroid injection into a hot strongly magnetized plasma. Nucl. Fusion 49, 095 008.Google Scholar
Liu, W., Hsu, S. C., Li, H., Li, S. and Lynn, A. G. 2008 a Ideal magnetohydrodynamic simulation of magnetic bubble expansion as a model for extragalactic radio lobes. Phys. Plasmas 15 (7), 072 905.Google Scholar
Liu, W., Li, H., Li, S. and Hsu, S. C. 2008 b Long-term evolution of magnetized bubbles in galaxy clusters. Astrophys. J. Lett. 684, L57L60.Google Scholar
Lynn, A. G., Gilmore, M., Watts, C., Herrea, J., Kelly, R., Will, S., Xie, S., Yan, L. and Zhang, Y. 2009 The helcat dual-source plasma device. Rev. Sci. Instrum. 80 (10), 103 501.Google Scholar
MacLatchy, C. S., Boucher, C., Poirier, D. A. and Gunn, J. 1992 Gundestrup: a Langmuir/Mach probe array for measuring flows in the scrape-off layer of TdeV. Rev. Sci. Instrum. 63 (8), 3923.Google Scholar
Mishin, E. and Pedersen, T. 2011 Ionizing wave via high-power HF acceleration. Geophys. Res. Lett. 38, L01 105.Google Scholar
Moreland, L. D., Schamiloglu, E., Lemke, R. W., Korovin, S. D., Rostov, V. V., Roitman, A. M., Hendricks, K. J. and Spencer, T. A 1994 Efficiency enhancement of high power vacuum bwos using nonuniform slow wave structures. IEEE Trans. Plasma Sci. 22, 554.Google Scholar
Nishida, Y., Kusaka, S. and Yugami, N. 1994 Excitation of wakefield and electron acceleration by short microwave pulse. Phys. Scr. T52, 65.Google Scholar
Okamoto, A., Hara, K., Nagaoka, K., Yoshimura, S., Vranješ, J., Kono, M. and Tanaka, M. Y. 2003 Experimental observation of a tripolar vortex in a plasma. Phys. Plasmas 10 (6), 2211.Google Scholar
Pedersen, T. et al. 2010 Creation of artificial ionospheric layers using high-power HF waves. Geophys. Res. Lett. 37, L02 106.Google Scholar
Pedersen, T. et al. 2011 Production of artificial ionospheric layers by frequency sweeping near the 2nd gyroharmonic. Annu. Geophys. 29, 47.Google Scholar
Reynolds, E. W., Koepke, M. E., Carroll, J. J. and Shinohara, S. 2006 Inhomogeneity scale lengths in a magnetized, low-temperature, collisionless, q-machine plasma column containing perpendicular-velocity shear. Phys. Plasmas 13, 092 106.Google Scholar
Ricci, P. and Rogers, B. N. 2009 Three-dimensional fluid simulations of a simple magnetized toroidal plasma. Phys. Plasmas 16, 092 307.Google Scholar
Ritz, Ch. P. et al. 1988 Advanced plasma fluctuation analysis techniques and their impact on fusion research. Rev. Sci. Instrum. 59 (8), 1739.Google Scholar
Rogers, B. N. and Ricci, P. 2010 Low-frequency turbulence in a linear magnetized plasma. Phys. Rev. Lett. 104, 225 002.Google Scholar
Romero-Talamás, C. A., Bellan, P. M. and Hsu, S. C. 2004 Multielement magnetic probe using commercial chip inductors. Rev. Sci. Instrum. 75, 2664.Google Scholar
Scime, E. E., Carr, J., Galante, M., Magee, R. M. and Hardin, R. 2013 Ion heating and short wavelength fluctuations in a helicon plasma source. Phys. Plasmas 20, 032 103.Google Scholar
Su, N. N., Horton, W. and Morrison, P. J. 1992 Drift wave vortices in nonuniform plasmas with sheared magnetic fields. Phys. Fluids B 4 (5), 1238.Google Scholar
Sudit, I. D. and Chen, F. F. 1994 RF compensated probes for high-density discharges. Plasma Sources Sci. Technol. 3, 162.Google Scholar
Terry, P. W. 2000 Suppression of turbulence and transport by sheared flow. Rev. Mod. Phys. 72 (1), 109.Google Scholar
Tsui, H. Y. W. et al. 1992 A new scheme for Langmuir probe measurement of transport and electron temperature fluctuations. Rev. Sci. Instrum. 63 (10), 4608.Google Scholar
Ware, A. S., Terry, P. W., Carreras, B. A. and Diamond, P. H. 1998 Turbulent heat and particle flux response to electric field shear. Phys. Plasmas 5 (1), 173.Google Scholar
Watts, C. and Hanna, J. 2004 Alfven wave propagation in a partially ionized plasma. Phys. Plasmas 11 (4), 1358.Google Scholar
Yee, J. and Bellan, P. M. 2000 Taylor relaxation and λ decay of unbounded, freely expanding spheromaks. Phys. Plasmas 7, 3625.Google Scholar
Zhang, Y., Lynn, A. G., Hsu, S. C., Gilmore, M. and Watts, C. 2009 Design of a compact coaxial magnetized plasma gun for magnetic bubble expansion experiments. In: Proc. 17th IEEE Int. Pulsed Power Conf., Washington, DC, 28 June –2 July, 2009.Google Scholar