Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-23T22:08:17.087Z Has data issue: false hasContentIssue false

Head-on collision of dust magnetoacoustic solitary waves in magnetized plasmas

Published online by Cambridge University Press:  13 December 2013

Shi-Sen Ruan*
Affiliation:
School of Electronics and Information Engineering, Hubei University of Science and Technology, Xianning 437100, China
Zhong-Ming Li
Affiliation:
School of Electronics and Information Engineering, Hubei University of Science and Technology, Xianning 437100, China
*
Email address for correspondence: [email protected]

Abstract

The head-on collision of dust magnetoacoustic solitary waves (DMASWs) is studied in magnetized electron–ion–dust plasma. The extended Poincaré–Lighthill–Kuo perturbation method is used to derive the Korteweg de Vries equations for DMASWs in this three-component plasma. The effects of the magnetic field intensity B0, the number of electrons residing on dust surface Zd, the ratio of electron to dust number density δ, the ratio of electron to ion temperature σ, and the ratio of dust acoustic velocity to dust Alfvén velocity β on the phase shift are investigated. It is found that these parameters can significantly influence the phase shifts of colliding DMASWs. The present investigation may be beneficial to understand the interaction between two DMASWs that may occur in plasma with dust impurities situations.

Type
Papers
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Asgari, H., Muniandy, S. V. and Wong, C. S. 2013 Dust-acoustic solitary waves in dusty plasmas with non-thermal ions. Phys. Plasma 20, 023705.CrossRefGoogle Scholar
Barkan, A., Merlino, R. L. and D'Angelo, N. 1995 Laboratory observation of the dust-acoustic wave mode. Phys. Plasma 2, 3563.Google Scholar
Bingham, R., de Angelis, U., Tsytovich, V. N. and Havnes, O. 1991 Electromagnetic wave scattering in dusty plasmas. Phys. Fluids B 3, 811.Google Scholar
Boufendi, L., Plain, A., Blondeau, J. Ph., Bouchoule, A., Laure, C. and Toogood, M. 1992 Measurements of particle size kinetics from nanometer to micrometer scale in a low-pressure argon-silane radio-frequency discharge. Appl. Phys. Lett. 60, 169.CrossRefGoogle Scholar
Carbonaro, P. 2012 Head-on collision of ion-acoustic solitary and shock waves in a two-electron-temperature plasma. Eur. Phys. J. D 66, 302.Google Scholar
Chatterjee, P., Ghorui, M. Kr. and Wong, C. S. 2011 Head-on collision of dust-ion-acoustic soliton in quantum pair-ion plasma. Phys. Plasmas 18, 103710.Google Scholar
Chatterjee, P. and Ghosh, U. N. 2011 Head-on collision of ion acoustic solitary waves in electron-positon-ion plasma with superthermal electrons and positrons. Eur. Phys. J. D 64, 403417.Google Scholar
Chatterjee, P. and Jana, R. K. 2005 Speed and shape of dust acoustic solitary waves in the presence of dust streaming. Zeitschrift Fur Naturforschung A (J. Phys. Sci.) 60, 275281.Google Scholar
Chu, J. H. and Lin, I. 1994 Direct observation of Coulomb crystals and liquids in strongly coupled RF dusty plasmas. Phys. Rev. Lett. 72, 40094012.Google Scholar
Cumberbatch, E. 1978 Spike solution for radially symmetric solitary waves. Phys. Fluids 20, 374.CrossRefGoogle Scholar
Das, B. and Chatterjee, P. 2006 Speed and shape of dust acoustic solitary waves with variable dust charge and two temperature ions. Phys. Plasmas 13, 062106.Google Scholar
Das, B. and Chatterjee, P. 2009 Large amplitude double layers in dusty plasma with non-thermal electrons and two temperature isothermal ions. Phys. Lett. A 373, 11441147.Google Scholar
El-Labany, S. K., El-Shamy, E. F. and El-Mahgoub, M. G. 2012 Quantum electron-acoustic solitary waves interaction in dense electron-ion plasmas. Astrophys. Space Sci. 339, 195.Google Scholar
El-Labany, S. K., El-Shamy, E. F., Sabry, R. and Khedr, D. M. 2013 The interaction of two non-planar solitary waves in electron-positron-ion plasmas: an application in active galactic nuclei. Phys. Plasmas 20, 012105.Google Scholar
El-Shamy, E. F. 2009 Head-on collision of ion thermal waves in a magnetized pair-ion plasma containing charged dust impurities. Phys. Plasmas 16, 113704.Google Scholar
Gardner, C. S., Greener, J. M., Kruskal, M. D. and Miura, R. M. 1967 Method for solving the Korteweg-Devries equation. Phys. Rev. Lett. 19, 1095.CrossRefGoogle Scholar
Ghorui, M. K., Chatterjee, P. and Wong, C. S. 2013 Head-on collision of dust ion acoustic solitary waves in magnetized quantum dusty plasmas. Astrophys Space Sci. 343, 639.Google Scholar
Ghosh, U. N., Roy, K. and Chatterjee, P. 2011 Head-on collision of dust acoustic solitary waves in a four-component dusty plasma with non-thermal ions. Phys. Plasmas 18, 103703.Google Scholar
Gupta, M. R., Sarkar, S., Ghosh, S., Debnath, M. and Khan, M. 2001 Effect of non-adiabaticity of dust charge variation on dust acoustic waves: generation of dust acoustic shock waves. Phys. Rev. E 63, 046406.CrossRefGoogle Scholar
Hartquist, T. W., Havnes, O. and Morfill, G. E. 1992 The effects of dust on the dynamics of astronomical and space plasmas. Fundam. Cosmic Phys. 15, 107142.Google Scholar
Hussain, S. and Mahmood, S. 2011 Propagation of nonlinear dust magnetoacoustic waves in cylindrical geometry. Phys. Plasmas 18, 123701.CrossRefGoogle Scholar
Khrapak, S., Samsonov, D., Morfill, G., Thomas, H., Yaroshenko, V., Rothermel, H., Hagl, T., Fortov, V., Nefedov, A., Molotkov, V., et al. 2003 Compressional waves in complex (dusty) plasmas under microgravity conditions. Phys. Plasmas 10, 1.CrossRefGoogle Scholar
Masood, W., Mushtaq, A. and Khan, R. 2007 Linear and nonlinear dust ion acoustic waves using the two-fluid quantum hydrodynamic model. Phys. Plasmas 14, 123702.CrossRefGoogle Scholar
Masood, W., Shah, H. A., Mushtaq, A. and Salimullah, M. 2009 Linear and nonlinear properties of an obliquely propagating dust magnetosonic wave. J. Phys. Plasmas 75, 217.Google Scholar
Melands, F. 1996 Nonlaminar multicomponent models for electron flow in positive polarity multigap accelerators. Phys. Plasmas 3, 3809.Google Scholar
Mendis, D. A. 2002 Progress in the study of dusty plasmas. Plasma Sources Sci. Technol. 11, A219.CrossRefGoogle Scholar
Rahman, O. and Mamun, A. A. 2011 Dust-ion-acoustic solitary waves in dusty plasma with arbitrarily charged dust and vortex-like electron distribution. Phys. Plasmas 18, 083703.Google Scholar
Rao, N. N. 1995 Magnetoacoustic modes in a magnetized dusty plasma. J. Plasma Phys. 53, 317.Google Scholar
Rao, N. N., Shukla, P. K. and Yu, M. Y. 1990 Dust-acoustic waves in dusty plasmas. Planet. Space Sci. 38, 543.CrossRefGoogle Scholar
Sayeed, F. and Mamun, A. A. 2007 Solitary potential in a four-component dusty plasma. Phys. Plasmas 14, 014501.CrossRefGoogle Scholar
Shukla, P. K. 2001 A survey of dusty plasma physics. Phys. Plasmas 8, 1791.Google Scholar
Shukla, P. K. and Silin, V. P. 1992 Dust ion-acoustic wave. Phys. Scr. 45, 508.CrossRefGoogle Scholar
Su, C. H. and Mirie, R. M. 1980 On head-on collisions between two solitary waves. J. Fluid Mech. 98, 509525.Google Scholar
Tsytovich, V. N. and Havnes, O. 1993 Charging processes, dispersion properties and anomalous transport in dusty plasma. Comm. Plasma Phys. Control. Fusion 15, 267.Google Scholar
Verheest, F. 1996 Waves and instabilities in dusty space plasmas. Space Sci. Rev. 77, 267302.Google Scholar
Verheest, F. and Hellberg, M. A. 2010 Non-thermal effects on existence domains for dust-acoustic solitary structures in plasmas with two-temperature ions. Phys. Plasmas 17, 023701.Google Scholar