Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-30T22:59:33.687Z Has data issue: false hasContentIssue false

Harmonic generation by the propagation of two-colour laser beams in an underdense plasma

Published online by Cambridge University Press:  30 July 2013

PALLAVI JHA
Affiliation:
Department of Physics, University of Lucknow, Lucknow 226007, India ([email protected])
NIRMAL KUMAR VERMA
Affiliation:
Department of Physics, University of Lucknow, Lucknow 226007, India ([email protected])
AKANKSHA SAROCH
Affiliation:
Department of Physics, University of Lucknow, Lucknow 226007, India ([email protected])

Abstract

An analytical theory is developed for studying the phenomenon of generation of efficient odd and even high harmonics by the propagation of two-colour linearly polarized laser beams in a homogeneous underdense plasma. The wave equation governing the evolution of the amplitude of various harmonics driven by the current density at corresponding frequencies is set up. The ratio of the fundamental frequencies of the two laser beams is considered to be an arbitrary integer. A numerical evaluation of amplitudes of the third, fourth and fifth harmonics has been presented. It is seen that the third harmonic amplitude generated by the two-colour system is enhanced in comparison to that obtained by a single laser beam. The detuning distance for the former is also increased in comparison to the latter case.

Type
Papers
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amendt, P., Eder, D. C. and Wilks, S. C. 1991 X-ray lasing by optical-field-induced ionization. Phys. Rev. Lett. 66, 2589.CrossRefGoogle ScholarPubMed
Antonsen, T. M. Jr. and Mora, P. 1992 Self-focusing and Raman scattering of laser pulses in tenuous plasmas. Phys. Rev. Lett. 69, 2204.CrossRefGoogle ScholarPubMed
Chu, H. H., Huang, S. Y., Yang, L. S., Chien, T. Y., Xiao, Y. F., Lin, J. Y., Lee, C. H., Chen, S. Y. and Wang, J. 2004 A versatile 10-TW laser system with robust passive controls to achieve high stability and spatiotemporal quality. Appl. Phys. B 79, 193.CrossRefGoogle Scholar
Deutsche, C., Furukawa, H., Mima, K., Murakami, M. and Nishihara, K. 1996 Interaction physics of the fast ignitor concept. Phys. Rev. Lett. 77, 2483.CrossRefGoogle Scholar
Esarey, E., Sprangle, P., Krall, J. and Ting, A. 1996 Overview of plasma-based accelerators concepts. IEEE Trans. Plasma Sci. 24, 252.CrossRefGoogle Scholar
Esarey, E., Ting, A., Sprangle, P., Umstadter, D. and Liu, X. 1993 Nonlinear analysis of relativistic harmonic generation by intense lasers in plasmas. IEEE Trans. Plasma Sci. 21, 95.CrossRefGoogle Scholar
Ganeev, R. A., Singhal, H., Naik, P. A., Kulagin, I. A., Redkin, P. V., Chakera, J. A., Tayyab, M., Khan, R. A. and Gupta, P. D. 2009 Enhancement of high-order harmonic generation using a two-color pump in plasma plumes. Phys. Rev. A 80, 033845.CrossRefGoogle Scholar
Gibbon, P. 2005 Short Pulse Laser Interaction with Matter. London: Imperial College Press.CrossRefGoogle Scholar
Huillier, A. L. and Balcou, P. 1992 Competition between ponderomotive and thermal forces in short-scale-length laser plasmas. Phys. Rev. Lett. 69, 1935.Google Scholar
Jha, P., Kumar, P., Upadhyay, A. K. and Raj, G. 2005 Electric and magnetic wakefields in a plasma channel. Phys. Rev. ST Accel. Beams 8, 071301.CrossRefGoogle Scholar
Jha, P., Mishra, R. K., Raj, G. and Upadhyay, A. K. 2007 Second harmonic generation in laser magnetized–plasma interaction. Phys. Plasmas 14, 053107.CrossRefGoogle Scholar
Jha, P., Mishra, R. K., Upadhyay, A. K. and Raj, G. 2006 Self-focusing of intense laser beam in magnetized plasma. Phys. Plasmas 13, 103102.CrossRefGoogle Scholar
Jha, P., Saroch, A. and Mishra, R. K. 2011 Generation of wakefields and terahertz radiation in laser–magnetized plasma interaction. Euro Phys. Lett 94, 15001.CrossRefGoogle Scholar
Liu, X., Umstadter, D., Esarey, E. and Ting, A. 1993 Harmonic generation by an intense laser pulse in neutral and ionised gases. IEEE Trans. Plasma Sci. 21, 21.CrossRefGoogle Scholar
Mauritsson, J., Johnsson, P., Gustafsson, E., Huillier, A. L., Schafer, K. J. and Garrade, M. B. 2006 Attosecond pulse trains generated using two color laser fields. Phys. Rev. Lett. 97, 013001.CrossRefGoogle ScholarPubMed
Max, C. E., Arons, J. and Langdon, A. B. 1974 Self-modulation and self-focusing of electromagnetic waves in plasmas. Phys. Rev. Lett 33, 209.CrossRefGoogle Scholar
McPherson, A., Gibson, G., Jara, H., Johann, U., Luk, T. S., Melntyre, I. H., Boyer, K. and Rhodes, C. K. 1987 Studies of multiphoton production of vacuum-ultraviolet radiation in the rare gases. J. Opt. Soc. Am. B 4, 595.CrossRefGoogle Scholar
Mori, W. B. 1994 Overview of laboratory plasma radiation sources. Phys. Scr. T52, 28.CrossRefGoogle Scholar
Mori, W. B., Decker, C. D. and Leemans, W. P. 1993 Relativistic harmonic content of nonlinear electromagnetic waves in underdense plasmas. IEEE Trans. Plasma Sci. 21, 110.CrossRefGoogle Scholar
Norreys, P. A., Zepf, M., Moustaizis, S., Fews, A. P., Zhang, J., Lee, P., Bakarezos, M., Danson, C. N., Dyson, A., Gibbon, P., et al. 1996 Efficient extreme UV harmonics generated from picosecond laser pulse interactions with solid targets. Phys. Rev. Lett. 76, 1832.CrossRefGoogle ScholarPubMed
Penano, J., Sprangle, P., Hafizi, B., Gordon, D. and Serafim, P. 2010 Terahertz generation in plasmas using two-color laser pulses. Phys. Rev. E 81, 026407.Google ScholarPubMed
Rax, J. M. and Fish, N. J. 1992 Third harmonic generation with ultrahigh-intensity laser pulses. Phys. Rev. Lett. 69, 772.CrossRefGoogle ScholarPubMed
Regan, S. P., Bradely, D. K., Chirokikh, A. V., Craxton, R. S., Meyerhofer, D. D., Seka, W., Short, R. W., Siman, A., Town, R. P., Yaakobi, B., et al. 1999 Laser–plasma interactions in long-scale-length plasmas under direct-drive national ignition facility conditions. Phys. Plasmas 6, 2072.CrossRefGoogle Scholar
Siedschlag, Ch., Muller, H. G. and Vrakking, M. J. J. 2005 Generation of isolated attosecond pulses by two-color laser fields. Laser Phys. 15, 916.Google Scholar
Solem, J. C., Luk, T., Boyer, K. and Rhodes, C. K. 1989 Prospects for X-ray amplification with charge-displacement self-channeling. IEEE J. Quantum Electron 25, 2423.CrossRefGoogle Scholar
Sprangle, P., Tang, C. M. and Esarey, E. 1987 Relativistic self-focussing of short-pulse radiation beams in plasmas. IEEE Trans. Plasma Sci. PS–15, 145.CrossRefGoogle Scholar
Steingrube, D. S., Schulz, E., Bihammer, T., Gaarde, M. B., Couairon, A., Morgner, U. and Koval, M. 2011 High order harmonic generation directly from a filament. New J. Phys. 13, 043022.CrossRefGoogle Scholar
Tabak, M., Hammer, J., Glinsky, M. E., Kruer, W. L., Wilks, S. C., Woodsworth, J., Campbell, E. M., Perry, M. D. and Koson, R. J. 1994 Ignition and high gain with ultra powerful lasers. Phys. Plasmas 1, 1626.CrossRefGoogle Scholar
Tajima, T. and Dawson, J. M. 1979 Laser electron accelerator. Phys. Rev. Lett 43, 267.CrossRefGoogle Scholar
Watanabe, S., Kondo, K., Nabekawa, Y., Sagisaka, A. and Kobayashi, Y. K. 1994 Two-color phase control in tunneling ionization and harmonic generation by a strong laser field and its third harmonic. Phys. Rev. Lett. 73, 2692.CrossRefGoogle Scholar
Wilks, S. C., Kruer, W. L., Tabak, M. and Langdon, A. B. 1992 Absorption of ultra-intense laser pulses. Phys. Rev. Lett. 69, 1383.CrossRefGoogle ScholarPubMed
Yao, J., Li, Y., Zeng, B., Xiong, H., Xu, H., Fu, Y., Chu, W., Ni, J., Liu, X., Chen, J., et al. 2010 Generation of an XUV supercontinuum by optimization of the angle between polarization planes of two linearly polarized pulses in a multicycle two-color laser field. Phys. Rev. A 82, 023826.CrossRefGoogle Scholar