Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-26T07:24:41.228Z Has data issue: false hasContentIssue false

Hamiltonian theory of guiding centre motion revisited

Published online by Cambridge University Press:  13 March 2009

B. Weyssow
Affiliation:
Association Euratom – Etat Belge, Faculté des Sciences, CP 231, Université Libre de Bruxelles Campus Plaine, Bv. du Triomphe, 1050 Bruxelles, Belgium
R. Balescu
Affiliation:
Association Euratom – Etat Belge, Faculté des Sciences, CP 231, Université Libre de Bruxelles Campus Plaine, Bv. du Triomphe, 1050 Bruxelles, Belgium

Abstract

The classical problem of the motion of a charged particle in a slowly varying electromagnetic field is reconsidered in the framework of ‘pseudo-canonical transformations’ in a Hamiltonian formalism. As compared with Littlejohn's important recent work, we develop a method which we believe to be more transparent. It consists, in essence, of exploiting directly the requirement that the Lie brackets of the guiding centre variables be independent of the (new) gyrophase. By using this method, we construct explicitly the complete set of functional relationships between the guiding centre variables and the particle variables, up to second order in the drift parameter є These expressions are valid for magnetic and electric fields of arbitrary geometry (within the drift approximation), which may be slowly varying in time.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alfvén, H. 1950 Cosmical Electrodynamics. Oxford University Press.Google Scholar
Balescu, R. & Kotera, T. 1967 Physica, 33, 558.CrossRefGoogle Scholar
Balescu, R., Kotera, T. & Pina, E. 1967 Physica, 33, 581.Google Scholar
Balescu, R. & Poulain, M. 1974 Physica, 76, 421.Google Scholar
Bialynicki-Birula, I. & Iwinski, Z. 1973 Rep. Math. Phys. 4, 139.Google Scholar
Baños, A. J. R., 1965 J. Plasma Phys. 1, 305.Google Scholar
Currie, D. G., Jordan, T. F. & Sudarshan, E. C. G. 1963 Rev. Mod. Phys. 35, 350.CrossRefGoogle Scholar
Dirac, P. A. M. 1949 Rev. Mod. Phys. 21, 392.Google Scholar
Gardner, C. S. 1966 Phys. Fluids, 9, 1997.CrossRefGoogle Scholar
Hastie, R. J., Taylor, J. B. & Haas, F. A. 1967 Ann. Phys. (NY), 41, 302.CrossRefGoogle Scholar
Hinton, F. L. & Hazeltine, R. D. 1976 Rev. Mod. Phys. 48, 239.Google Scholar
Kruskal, M. D. 1962 J. Math. Phys. 3, 806.Google Scholar
Krylov, N. & Bogoliubov, N. N. 1947 Introduction to Non-linear Medianics. Princeton University Press.Google Scholar
Littlejohn, R. G. 1979 J. Math. Phys. 20, 2445.CrossRefGoogle Scholar
Littlejohn, R. G. 1981 Phys. Fluids, 24, 1730.CrossRefGoogle Scholar
Littlejohn, R. G. 1983 J. Plasma Phys. 29, 111.Google Scholar
Mobozov, A. I. & Soloviev, L. S. 1966 Rev. Plasma Phys. 2, 201.Google Scholar
Nayfeh, A. 1973 Perturbation Methods. Wiley.Google Scholar
Northrop, T. G. 1963 The Adiabatic Motion of Charged Particles. Interscience.CrossRefGoogle Scholar
Sivukhine, D. V. 1965 Rev. Plasma Phys. 1, 1.Google Scholar
Sudarshan, E. C. G. & Mukunda, N. 1974 Classical Dynamics. Wiley.Google Scholar