Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-26T15:37:11.784Z Has data issue: false hasContentIssue false

General three-dimensional equilibria for gravitating ideal magnetohydrodynamics of field-aligned steady incompressible flows with an application to solar prominences

Published online by Cambridge University Press:  07 February 2020

S. M. Moawad*
Affiliation:
Department of Mathematics and Computer Sciences, Faculty of Science, Beni-Suef University, Egypt Egyptian Korean Faculty of Technological Industry and Energy, Beni-Suef Technological University, Egypt
*
Email address for correspondence: [email protected]

Abstract

This paper investigates the motion of three-dimensional ideal magnetohydrodynamics with incompressible flows. The governing equation is performed at steady state, with the magnetic field parallel to the plasma flow. The equations of stationary equilibrium are derived and described mathematically in Cartesian space. Two approaches for derivation of general three-dimensional solutions for Alfvénic and non-Alfvénic flows at constant and variable fluid densities are constructed. The general vector and scalar potentials of the velocity field are used to derive general formulas of general three-dimensional solutions for Alfvénic and non-Alfvénic flows. To verify the general results we have obtained, some examples are presented. An application that may be of interest for coronal loops and solar prominences is presented.

Type
Research Article
Copyright
© Cambridge University Press 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adem, A. A. & Moawad, S. M. 2018 Exact solutions to several nonlinear cases of generalized Grad–Shafranov equation for ideal MHD flows in axisymmetric domain. Z. Naturforsch. A 73 (5), 371384.Google Scholar
Al-Salti, N., Neukirch, T. & Ryan, R. 2010 Three-dimensional solutions of the magnetohydrostatic equations: rigidly rotating magnetized coronae in cylindrical geometry. Astron. Astrophys. 514, A38.CrossRefGoogle Scholar
Andreussi, T., Morrison, P. J. & Pegoraro, F. 2010 MHD equilibrium variational principles with symmetry. Plasma Phys. Control. Fusion 52 (5), 055001.CrossRefGoogle Scholar
Berger, T. E., Liu, W. & Low, B. C. 2012 SDO/AIA Detection of solar prominence formation within a coronal cavity. Astrophys. J. Lett. 758, L37.CrossRefGoogle Scholar
Brushlinskii, K. V. & Zhdanova, N. S. 2004 Steady-state MHD flows in nozzles with an external longitudinal magnetic field. Fluid Dyn. 39 (3), 474484.CrossRefGoogle Scholar
Camenen, Y., Peeters, A. G., Angioni, C., Casson, F. J., Hornsby, W. A., Snodin, A. P. & Strintzi, D. 2009 Impact of the background toroidal rotation on particle and heat turbulent transport in tokamak plasmas. Phys. Plasmas 16 (1), 012503.CrossRefGoogle Scholar
Chandrasekhar, S. & Kendall, P. C. 1957 On force-free magnetic fields. Astrophys. J. 126, 457460.CrossRefGoogle Scholar
Chapman, I. T., Hender, T. C., Saarelma, S., Sharapov, S. E., Akers, R. J., Conway, N. J.& MAST TEAM 2006 The effect of toroidal plasma rotation on sawteeth in MAST. Nucl. Fusion 46 (12), 10091016.CrossRefGoogle Scholar
Chkhetiani, O. G., Eidelman, A. & Golbraikh, E. 2006 Large- and small-scale turbulent spectra in MHD and atmospheric flows. Nonlinear Process. Geophys. 13 (6), 613620.CrossRefGoogle Scholar
Cicogna, G. 2008 Symmetry classification of quasi-linear PDE’s containing arbitrary functions. Nonlinear Dyn. 51 (1–2), 309316.CrossRefGoogle Scholar
Cicogna, G. 2012 Addendum to: symmetry classification of quasi-linear PDE’s. II: an exceptional case. Nonlinear Dyn. 67 (4), 29092912.CrossRefGoogle Scholar
Cicogna, G., Ceccherini, F. & Pegoraro, F. 2006 Applications of symmetry methods to the theory of plasma physics. Symmetry Integr. Geom.: Meth. Applic. (SIGMA) 2, 017.Google Scholar
Cicogna, G. & Pegoraro, F. 2015 Magnetohydrodynamic equilibria with incompressible flows: symmetry approach. Phys. Plasmas 22 (2), 022520.CrossRefGoogle Scholar
Cicogna, G., Pegoraro, F. & Ceccherini, F. 2010 Symmetries, weak symmetries, and related solutions of the Grad–Shafranov equation. Phys. Plasmas 17 (10), 102506.CrossRefGoogle Scholar
Davidson, P. A. 2001 An Introduction to Magnetohydrodynamics. Cambridge University Press.CrossRefGoogle Scholar
Dombre, T., Frisch, U., Greene, J. M., Hénon, M., Mehr, A. & Soward, A. M. 1986 Chaotic streamlines in the ABC flows. J. Fluid Mech. 167, 353391.CrossRefGoogle Scholar
Enciso, A. & Peralta-Salas, D. 2012 Knots and links in steady solutions of the Euler equation. Ann. of Math. 175 (1), 345367.CrossRefGoogle Scholar
Enciso, A. & Peralta-Salas, D. 2015 Existence of knotted vortex tubes in steady Euler flows. Acta Math. 214 (1), 61134.CrossRefGoogle Scholar
Enciso, A. & Peralta-Salas, D. 2016 Beltrami fields with a nonconstant proportionality factor are rare. Arch. Rat. Mech. Anal. 220 (1), 243260.CrossRefGoogle Scholar
Enciso, A., Poyato, D. & Soler, J. 2016 Stability results, almost global generalized Beltrami fields and applications to vortex structures in the Euler equations. Commun. Math. Phys. 360 (1), 197269.CrossRefGoogle Scholar
Ershkov, S. V. 2016 About existence of stationary points for the Arnold–Beltrami–Childress (ABC) flow. Appl. Math. Comput. 276 (5), 379383.Google Scholar
Fang, T., Zhang, J. & Yao, S. 2009 Slip MHD viscous flow over a stretching sheet – an exact solution. Commun. Nonlinear Sci. Numer. Simul. 14 (11), 37313737.CrossRefGoogle Scholar
Frewer, M., Oberlack, M. & Guenther, S. 2007 Symmetry investigations on the incompressible stationary axisymmetric Euler equations with swirl. Fluid Dyn. Res. 39 (8), 647664.CrossRefGoogle Scholar
Gebhardt, U. & Kiessling, M. 1992 The structure of ideal magnetohydrodynamics with incompressible steady flow. Phys. Fluids B 4 (7), 16891701.CrossRefGoogle Scholar
Hasegawa, H., Fujimoto, M., Takagi, K., Saito, Y., Mukai, T. & Rème, H. 2006 Single-spacecraft detection of rolled-up Kelvin–Helmholtz vortices at the flank magnetopause. J. Geophys. Res. 111, A09203.CrossRefGoogle Scholar
Hayat, T. 2006 Exact solutions to rotating flows of a Burgers’ fluid. Comput. Math. Appl. 52 (10–11), 14131424.CrossRefGoogle Scholar
Hayat, T. & Shehzad, S. A. 2014 Three-dimensional stretched flow via convective boundary condition and heat generation/absorption. Intl J. Numer. Meth. Heat Fluid Flow 24 (2), 342358.CrossRefGoogle Scholar
Hillier, A., Isobe, H., Shibata, K. & Berger, T. 2012 Numerical simulations of the magnetic Rayleigh–Taylor instability in the Kippenhahn–Schlüter prominence model. II. Reconnection-triggered downflows. Astrophys. J. 756 (2), 110.CrossRefGoogle Scholar
Hoernel, J.-D. 2008 On the similarity solutions for a steady MHD equation. Commun. Nonlinear Sci. Numer. Simul. 13 (7), 13531360.CrossRefGoogle Scholar
Khan, W. A. & Pop, I. 2010 Boundary-layer flow of a nanofluid past a stretching sheet. Intl J. Heat Mass Transfer 53 (11–12), 24772483.CrossRefGoogle Scholar
Kuiroukidis, A. 2010 Stable non-separable tokamak equilibria with parallel flows. Plasma Phys. Control. Fusion 52 (1), 015002.CrossRefGoogle Scholar
Kuiroukidis, A. & Throumoulopoulos, G. N. 2012 Symmetric and asymmetric equilibria with non-parallel flows. Phys. Plasmas 19 (2), 022508.CrossRefGoogle Scholar
Kuiroukidis, A. & Throumoulopoulos, G. N. 2013 Nonlinear translational symmetric equilibria relevant to the L–H transition. J. Plasma Phys. 79 (3), 257265.CrossRefGoogle Scholar
Kuiroukidis, A. & Throumoulopoulos, G. N. 2014 Analytical up-down asymmetric equilibria with non-parallel flows. Phys. Plasmas 21 (3), 032509.CrossRefGoogle Scholar
Kuiroukidis, A. & Throumoulopoulos, G. N. 2016 An alternative method of constructing axisymmetric toroidal equilibria with nonparallel flow. Phys. Plasmas 23 (11), 114502.CrossRefGoogle Scholar
Lu, S. W., Wang, C., Li, W. Y., Tang, B. B., Torbert, R. B., Giles, B. L., Russell, C. T., Burch, J. L., Mcfadden, J. P., Auster, H. U. et al. 2019 Prolonged Kelvin–Helmholtz waves at dawn and dusk flank magnetopause: simultaneous observations by MMS and THEMIS. Astrophys. J. 875 (1), 57.CrossRefGoogle Scholar
Matsumoto, Y. & Hoshino, M. 2004 Onset of turbulence induced by a Kelvin–Helmholtz vortex. Geophys. Res. Lett. 31 (2), L02807.CrossRefGoogle Scholar
McClements, K. G. & Hole, M. J. 2010 On steady poloidal and toroidal flows in tokamak plasmas. Phys. plasmas 17 (8), 082509.CrossRefGoogle Scholar
McClements, K. G. & McKay, R. J. 2009 The orbital dynamics and collisional transport of trace massive impurity ions in rotating tokamaks. Plasma Phys. Control. Fusion 51 (11), 115009.CrossRefGoogle Scholar
Moawad, S. M. 2012 Equilibrium properties, variational principles, and linear stability for steady-state, two-dimensional, ideal gravitating plasma of a barotropic compressible flow. Can. J. Phys. 90 (3), 305312.CrossRefGoogle Scholar
Moawad, S. M. 2013 Linear and nonlinear stability criteria for compressible MHD flows in a gravitational field. J. Plasma Phys. 79 (5), 873883.CrossRefGoogle Scholar
Moawad, S. M. 2014 Exact equilibria for nonlinear force-free magnetic fields with its applications to astrophysics and fusion plasmas. J. Plasma Phys. 80 (2), 173195.CrossRefGoogle Scholar
Moawad, S. M. 2015 Trigonometric and hyperbolic functions method for constructing analytic solutions to nonlinear plane magnetohydrodynamics equilibrium equations. Phys. Plasmas 22 (2), 022130.CrossRefGoogle Scholar
Moawad, S. M., El-Kalaawy, O. H. & Shaker, H. M. 2017a Some axisymmetric equilibria for certain ideal and resistive magnetohydrodynamics with incompressible flows. Results Phys. 7, 31633175.CrossRefGoogle Scholar
Moawad, S. M. & Ibrahim, D. A. 2016 Three-dimensional nonlinear ideal MHD equilibria with field-aligned incompressible and compressible flows. Phys. Plasmas 23 (8), 082502.CrossRefGoogle Scholar
Moawad, S. M., Ramadan, A. A., Ibrahim, D. A., El-Kalaawy, O. H. & Hussien, E. 2017b Linear stability of certain translationally symmetric MHD equilibria with incompressible flow. Results Phys. 7, 21592171.CrossRefGoogle Scholar
Nakamura, T. K. M. & Fujimoto, M. 2008 Magnetic effects on the coalescence of Kelvin–Helmholtz vortices. Phys. Rev. Lett. 101 (16), 165002.CrossRefGoogle ScholarPubMed
Nickeler, D. H., Goedbloed, J. P. & Fahr, H.-J. 2006 Stationary field-aligned MHD flows at astropauses and in astrotails: principles of a counterflow configuration between a stellar wind and its interstellar medium wind. Astron. Astrophys. 454 (3), 797810.CrossRefGoogle Scholar
Nikulsin, N., Hoelzl, M., Zocco, A., Lackner, K. & Günter, S. 2019 A three-dimensional reduced MHD model consistent with full MHD. Phys. Plasmas 26 (10), 102109.CrossRefGoogle Scholar
Nykyri, K. & Otto, A. 2001 Plasma transport at the magnetospheric boundary due to reconnection in Kelvin–Helmholtz vortices. Geophys. Res. Lett. 28 (18), 35653568.CrossRefGoogle Scholar
Petrie, G. J. D. & Neukirch, T. 1999 Self-consistent three-dimensional steady state solutions of the MHD equations with field-aligned incompressible flow. Geophys. Astrophys. Fluid Dyn. 91 (3–4), 269302.CrossRefGoogle Scholar
Petrie, G. J. D., Tsinganos, K. & Neukirch, T. 2005 Steady 2D prominence-like solutions of the MHD equations with field-aligned compressible flow. Astron. Astrophys. 429 (3), 10811092.CrossRefGoogle Scholar
Picard, P. Y. 2008 Some exact solutions of the ideal MHD equations through symmetry reduction method. J. Math. Anal. Appl. 337 (1), 360385.CrossRefGoogle Scholar
Rajotia, D. & Jat, R. N. 2014 Dual solutions of three dimensional MHD boundary layer flow and heat transfer due to an axisymmetric shrinking sheet with viscous dissipation and heat generation/absorption. Indian J. Pure Appl. Phys. 52 (12), 812820.Google Scholar
Rashidi, M. M. & Pour, S. A. M. 2010 Analytic approximate solutions for unsteady boundary-layer flow and heat transfer due to a stretching sheet by homotopy analysis method. Nonlinear Anal. Model. Control 15 (1), 8395.CrossRefGoogle Scholar
Reddy, K. S., Fauve, S. & Gissinger, Ch. 2018 Instabilities of MHD flows driven by traveling magnetic fields. Phys. Rev. Fluids 3 (6), 063703.CrossRefGoogle Scholar
Rossi, C., Califano, F., Retin, A., Sorriso-Valvo, L., Henri, P., Servidio, S., Valentini, F., Chasapis, A. & Rezeau, L. 2015 Two-fluid numerical simulations of turbulence inside Kelvin–Helmholtz vortices: intermittency and reconnecting current sheets. Phys. Plasmas 22 (12), 122303.CrossRefGoogle Scholar
Ryutova, M., Berger, T., Frank, Z., Tarbell, T. & Title, A. 2010 Observation of plasma instabilities in quiescent prominences. Solar Phys. 267 (1), 7594.CrossRefGoogle Scholar
Shehzad, S. A., Hayat, T. & Alsaedi, A. 2016 Three-dimensional MHD flow of Casson fluid in porous medium with heat generation. J. Appl. Fluid Mech. 9 (1), 215223.Google Scholar
Shi, B. 2011 Semi-analytic approach to diverted tokamak equilibria with incompressible toroidal and poloidal flows. Nucl. Fusion 51 (2), 023004.CrossRefGoogle Scholar
Suplee, C. 2009 The Plasma Universe. Cambridge University Press.CrossRefGoogle Scholar
Takagi, K., Hashimoto, C., Hasegawa, H., Fujimoto, M. & Tandokoro, R. 2006 Kelvin–Helmholtz instability in a magnetotail flank-like geometry: three-dimensional MHD simulations. J. Geophys. Res. 111, A08202.CrossRefGoogle Scholar
Throumoulopoulos, G. N. & Tasso, H. 2001 On resistive magnetohydrodynamic equilibria of an axisymmetric toroidal plasma with flow. J. Plasma Phys. 64 (5), 601612.CrossRefGoogle Scholar
Titov, V. S., Tassi, E. & Hornig, G. 2004 Exact solutions for steady reconnective annihilation revisited. Phys. Plasmas 11 (10), 46624671.CrossRefGoogle Scholar
Tsui, K. H., Navia, C. E., Serbeto, A. & Shigueoka, H. 2011 Tokamak equilibria with non field-aligned axisymmetric divergence-free rotational flows. Phys. Plasmas 18 (7), 072502.CrossRefGoogle Scholar
White, R. H. & Hazeltine, R. D. 2009 Symmetry analysis of the Grad–Shafranov equation. Phys. Plasmas 16 (12), 123101.CrossRefGoogle Scholar
Zahid, M., Rana, M. A., Haroon, T. & Siddiqui, A. M. 2013 Applications of Sumudu transform to MHD flows of an Oldroyd-B fluid. Appl. Math. Sci. 7 (141), 70277036.Google Scholar
Zeng, Y. & Zhang, Z. 2018 Applications of a formula on Beltrami flow. Math. Meth. Appl. Sci. 41 (10), 36323642.CrossRefGoogle Scholar
Zhou, D. & Yu, W. 2011 A local noncircular equilibrium model and its application to residual zonal flow calculations. Phys. Plasmas 18 (5), 052505.CrossRefGoogle Scholar