Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-26T05:54:49.504Z Has data issue: false hasContentIssue false

Formation of percursor whistler mode plasma turbulence in parallel shock waves

Published online by Cambridge University Press:  13 March 2009

B. W. Jackson
Affiliation:
Department of Electrical Engineering, Northeastern University, Boston, Massachusetts 02115
K. I. Golden
Affiliation:
Department of Electrical Engineering, Northeastern University, Boston, Massachusetts 02115

Abstract

The beam-whistler and ion cyclotron instabilities are proposed as principal mechanisms for the generation of precursor turbulence in shock waves propagating along the constant magnetic field. The beam is formed from ions which are reflected from a potential barrier whose existence inside the shock layer is assumed. We find that these reflected beam particles drive unstable a spatial continuum of zero group velocity (with respect to the shock front) precursor whistler waves.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1979

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Biskamp, D. & Welter, H. 1972 J. Geophys. Res. 77, 6052.CrossRefGoogle Scholar
Chen, L. & Golden, K. I. 1976 Phys. Lett. 58A, 462.CrossRefGoogle Scholar
Cipolla, J. W., Golden, K. I. & Silevitch, M. B. 1977 Phys. Fluids, 20, 282.CrossRefGoogle Scholar
Decker, G. & Robson, A. E. 1972 Phys. Rev. Lett. 29, 1071.CrossRefGoogle Scholar
Forslund, D. W., Kindel, J. M. & Lindman, E. L. 1972 Phys. Rev. Lett. 29, 249.CrossRefGoogle Scholar
Fredricks, R. W., Kennel, C. F., Scarf, F. L., Crook, G. M. & Green, I. M. 1968 Phys. Rev. Lett. 21, 1761.CrossRefGoogle Scholar
Golden, K. I., Linson, L. M. & Mansi, S. A. 1973 Phys. Fluids, 16, 2319.CrossRefGoogle Scholar
Golden, K. I., Chen, L., Cipolla, J. W. Jr & Silevitch, M. B. 1977 Phys. Fluids, 20, 1757.CrossRefGoogle Scholar
Greenberg, O. W. & Tréve, Y. M. 1960 Phys. Fluids, 3, 769.CrossRefGoogle Scholar
Kennel, C. F. & Sagdeev, R. Z. 1967 J. Geophys. Rev. 72, 3303.CrossRefGoogle Scholar
Kovner, M. S. 1961 Soviet Phys. JETP, 13, 369.Google Scholar
Lindman, E. L. & Drummond, W. E. 1971 Studies of oblique shock structure, University of Texas report, Austin, Texas.Google Scholar
Moiseev, S. S. & Sagdeev, R. Z. 1963 J. Nucl. Energy. C5, 43.CrossRefGoogle Scholar
Montgomery, M. D., Asbridge, J. R. & Bame, S. J. 1970 J. Geophys. Res. 75, 1217.CrossRefGoogle Scholar
Patrick, R. M. & Pugh, E. R. 1969 Phys. Fluids, 12, 366.CrossRefGoogle Scholar
Sagdeev, R. Z. 1979 Rev. Mod. Phys. 51, 11.CrossRefGoogle Scholar
Tidman, D. A. & Krall, M. A. 1971 Shock Waves in Collisionless Plasmas. Wiley.Google Scholar