Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-12-05T02:40:08.640Z Has data issue: false hasContentIssue false

Fluid theory for fluctuations in cold inhomogeneous plasmas

Published online by Cambridge University Press:  13 March 2009

P. Uddholm
Affiliation:
Department of Theoretical Plasma Physics, University of Umeå, S-901 87 Umeå, Sweden

Abstract

The theory for potential surface wave fluctuation spectra in cold, inhomogeneous, magnetized plasmas is reconsidered, adopting a transition probability approach. A fluctuation dissipation relation is derived, which is valid for general density profiles and which reduces to the familiar fluctuation dissipation theorem for homogeneous plasmas. Significant corrections to previous work are found. Particular spectra are calculated for the special case of a magnetized plasma with a one-dimensional inhomogeneity.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aliev, Yu. M., Vukovič, S., Gradov, O. M. & Kyrii, A. Yu. 1975 J. Plasma Phys. 13, 273.CrossRefGoogle Scholar
Aliev, Yu. M., Vukovič, S., Gradov, O. M. & Kyrii, A. Yu. 1976 Soviet Phys. Tech. Phys. 20, 1441.Google Scholar
Aliev, Yu. M., Vukovič, S., Gradov, O. M., Kyrii, A. Yu. & Frolov, A. A. 1980 Soviet J. Plasma Phys. 6, 417.Google Scholar
Birkhof, G. & Rota, G. C. 1969 Ordinary Differential Equations. Xerox.Google Scholar
Budnikov, V. N., Golant, V. E. & Obuchov, A. A. 1970 Phys. Lett. 31 A, 76.CrossRefGoogle Scholar
Demchenko, V. V. & Zayed, K. E. 1973 J. Plasma Phys. 9, 33.CrossRefGoogle Scholar
Dolgopolov, V. V. 1966 Soviet Phys. Tech. Phys. 11, 198.Google Scholar
Ginzburg, V. L. 1970 The Propagation of Electromagnetic Waves in Plasmas. Pergamon.Google Scholar
Gradov, O. M. & Kyrii, A. Yu. 1978 Soviet Phys. Tech. Phys. 23, 306.Google Scholar
Hagfors, T. & Brockelman, R. A. 1971 Phys. Fluids, 14, 1143.CrossRefGoogle Scholar
Ichimaru, S. 1973 Basic Principles of Plasma Physics. Benjamin.Google Scholar
Klimontovich, Yu. L. 1967 The Statistical Theory of Non-Equilibrium Processes in a Plasma. Pergamon.Google Scholar
Pakhomov, V. I. & Stepanov, K. N. 1968 Soviet Phys. Tech. Phys. 12, 1011.Google Scholar
Rosenbluth, M. N. & Rostoker, N. 1962 Phys. Fluids, 5, 776.CrossRefGoogle Scholar
Stepanov, K. N. 1965 Soviet Phys. Tech. Phys. 10, 773.Google Scholar
Tegeback, R., Usenko, A. S., Yakimenko, I. P. & Zagorodny, A. G. 1977 J. Plasma Phys. 18, 113.CrossRefGoogle Scholar
Theimer, O. & Theimer, R. 1973 Plasma Phys. 15, 837.CrossRefGoogle Scholar
Uddholm, P. 1982 J. Phys. A, 15, 1701.Google Scholar
Uddholm, P. 1983 J. Phys. A, 16, 1315.Google Scholar
Uddholm, P. & Stenflo, L. 1980 Phys. Scripta, 22, 71.CrossRefGoogle Scholar
Yakimenko, I. P. & Zagorodny, A. G. 1980 Proceedings of International Conference on Plasma Physics, Nagoya, vol. 1, p. 64.Google Scholar