Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-12T01:58:18.080Z Has data issue: false hasContentIssue false

Finite-Larmor-radius equations for coffisionless plasmas in general magnetic fields

Published online by Cambridge University Press:  13 March 2009

E. Bowers
Affiliation:
Plasma Physics Laboratory, Princeton University

Extract

Expressing the Vlasov equation in a local system of co-ordinates defined by the magnetic field, the distribution function is expanded in terms of a small parameter e (assumed < 1), the ratio of the ion Larmor radius to a characteristic length of change perpendicular to the magnetic field. Since the finite-Larmorradius (FLR) approximation restricts consideration to weakly unstable systems, the equations apply only to magnetic configurations in which the curvature of the lines of force is weak. In allowing for the effects of plasma pressure (β ˜ I) it is found that the FLR corrections to the stress tensor take their simplest form in the centre-of-mass frame, while the case of low β yields equations best expressed in the guiding-centre frame.

Type
Articles
Copyright
Copyright © Cambridge University Press 1971

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bajaj, N. K. & Tandon, J. N. 1968 Nucl. Fusion 8, 297.CrossRefGoogle Scholar
Bajaj, N. K. 1969 Phys. Fluids 12, 1529.CrossRefGoogle Scholar
Bowers, E. & Haines, M. G. 1968 Phys. Fluids 11, 2695.CrossRefGoogle Scholar
Bowers, E. & Haines, M. G. 1971 Phys. Fluids 14, 165.CrossRefGoogle Scholar
Chen, G. F., Goldberger, M. & Low, F. E. 1956 Proc. Roy. Soc. A 236, 112.Google Scholar
Frieman, E., Davidson, R. & Langdon, B. 1966 Phys. Fluids 9, 1475.CrossRefGoogle Scholar
Furth, H. P., Killeen, J., Rosenbluth, M. N. & Coppi, B. 1965 Plasma Phys. and Controlled Nuclear Fusion Research, IAEA, Vienna, 1, 103.Google Scholar
Grad, H. 1949 Commun. Pure Appl. Math. 2, 331.CrossRefGoogle Scholar
Hastie, R. J., Taylor, J. B. & Haas, F. A. 1967 Ann. Phys. 41, 302.CrossRefGoogle Scholar
Herdan, R. & Liley, B. S. 1960 Rev. Mod. Phys. 32, 731.CrossRefGoogle Scholar
Kennel, C. F. & Greene, J. 1966 Ann. Phys. 38, 63.CrossRefGoogle Scholar
MacMahon, A. 1965 Phys. Fluids 8, 1840.CrossRefGoogle Scholar
Milantiev, V.P. 1969 PlasmaPhys. 11, 145.Google Scholar
Newcomb, W. A. 1966 Dynamics of Fluids and Plasmas (ed. Pai, ), p. 405. Academic.Google Scholar
Pearlstein, L. D. & Krall, N. A. 1966 Phys. Fluids 9, 2231.CrossRefGoogle Scholar
Rossenbluth, M. N., Krall, N. A. & Rostoker, N. 1962 Nucl. Fusion (Suppl.) (1), 143.Google Scholar
Rosenbluth, M. N. & Simon, A. 1965 Phys. Fluids 8, 1300.CrossRefGoogle Scholar
Rosenbluth, M. N. & Varma, R. K. 1967 Nucl. Fusion 7, 33.CrossRefGoogle Scholar
Simon, A. & Thompson, W. B. 1966 Plasma Phys. 8, 373.Google Scholar
Thompson, W. B. 1961 Rep. Prog. Phys. 14, 363.CrossRefGoogle Scholar