Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-12-02T21:58:04.631Z Has data issue: false hasContentIssue false

Filamentation instability of a laser beam in an inhomogeneous plasma in an arbitrarily oriented external magnetic field

Published online by Cambridge University Press:  09 July 2013

A. HASANBEIGI
Affiliation:
Department of Physics and Institute for Plasma Research, Kharazmi University, 43 Dr Mofatteh Avenue, Tehran 14911-15719, Iran ([email protected])
A. MOUSAVI
Affiliation:
Department of Physics and Institute for Plasma Research, Kharazmi University, 43 Dr Mofatteh Avenue, Tehran 14911-15719, Iran ([email protected])
H. MEHDIAN
Affiliation:
Department of Physics and Institute for Plasma Research, Kharazmi University, 43 Dr Mofatteh Avenue, Tehran 14911-15719, Iran ([email protected])

Abstract

The interaction of a short pulse laser beam with an inhomogeneous plasma has been studied in the presence of an obliquely applied external magnetic field. The dispersion relation and the analytical growth rate have been obtained solving the nonlinear wave equation. It is found that the growth rate and the cut-off wavenumber are strongly influenced by the direction and magnitude of the applied magnetic field. Moreover, the growth rate has been modified by plasma inhomogeneity.

Type
Papers
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andreev, N. E., Gorbunov, L. M., Mora, P. and Ramazashvili, R. R. 2007 Phys. Plasmas 14, 083104.CrossRefGoogle Scholar
Bespalov, V. I. and Talanov, V. T. 1966 JETP Lett. 3, 307.Google Scholar
Boyd, T. J. M., Coutts, G. A. and Marks, D. C. 1987 Phys. Fluids 30, 553.Google Scholar
Bret, A. 2010 Phys. Rev. E 81, 036402.Google Scholar
Bret, A. and Alvarob, E. P. 2011 Phys. Plasmas 18, 080706.CrossRefGoogle Scholar
Califano, F., Prandi, R., Pegoraro, F. and Bulanov, S. V. 1998 Phys. Rev. E 58, 7837.Google Scholar
Hasanbeigi, A., Saberi, N. and Mehdian, H. 2012 Phys. Plasmas 19, 042112.CrossRefGoogle Scholar
Jha, P., Singh, R. and Mishra, R. 2010 Phys. Scr. 81, 055504.CrossRefGoogle Scholar
Kumar, N., Tripathi, V. K. and Sawhney, B. K. 2006 Phys. Scr. 73, 659.CrossRefGoogle Scholar
Monot, P., Auguste, T., Gibbon, P., Jakober, F., Mainfray, G., Dulieu, A., Jaquet, M. L., Malka, G. and Miquel, J. L. 1995 Phys. Rev. Lett. 74, 2953.CrossRefGoogle Scholar
Palastro, J. P. and Antonsen, T. M. 2009 Phys. Rev. E 80, 016409.Google Scholar
Pukhov, A., Sheng, Z.-M. and Meyer-ter-Vehn, J. 1997 Phys. Plasmas 6, 2847; Gahn, C., Tsakiris, G. D. and Pukhov, A. 1999 Phys. Rev. Lett. 83, 4772.CrossRefGoogle Scholar
Quinn, K., Romagnani, L., Ramakrishna, B., Sarri, G., Dieckmann, M. E., Wilson, P. A., Fuchs, J., Lancia, L., Pipahl, A., Toncian, T., et al. 2012 Phys. Rev. Lett. 108, 135001.CrossRefGoogle Scholar
Shockley, R. C. 1979 J. Phys. D 12, 2053.Google Scholar
Singh, R. and Tripathi, V. K. 2009 Phys. Plasmas 16, 052108.CrossRefGoogle Scholar
Singh, R. and Tripathi, V. K. 2011 Phys. Plasmas 18, 022111.CrossRefGoogle Scholar
Sullivan, A., Hamster, H., Gordon, S. P., Falcone, R. W. and Nathel, H. 1994 Opt. Lett. 19 1544.CrossRefGoogle Scholar
Tabak, M., Hammer, J., Glinsky, M. E., Kruer, W. L., Wilks, S. C., Woodworth, J., Campbell, E. M., Perry, M. D. and Mason, R. J. 1994 Phys. Plasmas 1, 1626.CrossRefGoogle Scholar
Tanaka, K. A., Allen, M. M., Pukhov, A., Kodama, R., Fujita, H., Kato, Y., Kawasaki, T., Kitagawa, Y., Mima, K., Morio, N., et al. 2000 Phys. Rev. E 62, 2.Google Scholar
Wilks, S. C., Kruer, W. L., Tabak, M. and Langdon, A. B. 1992 Phys. Rev. Lett. 69, 1383.CrossRefGoogle Scholar