Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-12T10:28:26.407Z Has data issue: false hasContentIssue false

FDTD study of the effects of the doubly ionized ions on the plasma immersion ion implantation process

Published online by Cambridge University Press:  15 January 2014

M. Sharifian*
Affiliation:
Atomic & Molecular Group, Department of Physics, University of Yazd, P.O. Box: 89195-741, Yazd, Iran
Y. Sadeghi
Affiliation:
Atomic & Molecular Group, Department of Physics, University of Yazd, P.O. Box: 89195-741, Yazd, Iran
*
Email address for correspondence: [email protected]

Abstract

The plasma sheath dynamics adjacent to the cathode in the presence of electrons, ions, and doubly ionized ions have been simulated in this work. The aim of the present investigation is, therefore, to study the effect of the doubly ionized ions on the characteristics of the plasma sheath dynamics such as potential distribution, sheath length, and ions dose and velocity near the surface (cathode). It was shown that the presence of the doubly ionized ions can increase the normalized potential of all positions in sheath region, sheath length, and ion/doubly ionized ions density ratio on the target. Obtained results may be helpful for analyzing the practical results of the surface operations such as ion implantation and plasma polymerization, etc.

Type
Papers
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Anders, A. 1997 Metal plasma immersion ion implantation and deposition: a review. Surf. Coat. Technol. 93, 158167.Google Scholar
Anders, A. 2000 Handbook of Plasma Immersion Ion Implantation and Deposition. New York: Wiley.Google Scholar
Becker, A. and Faisal, F. 1999a Interplay of electron correlation and intense field dynamics in the double ionization of helium. Phys. Rev. A 59, 17421745.Google Scholar
Becker, A. and Faisal, F. 1999b Production of high-charge states of Xe in a femtosecond laser pulse. Phys. Rev. A 59, 31823185.Google Scholar
Becker, A. and Faisal, F. 1999c S-matrix analysis of ionization yields of noble gas atoms at the focus of Ti: sapphire laser pulses. J. Phys. B: At. Mol. Opt. Phys. 32, L335.Google Scholar
Chen, A., Scheuer, J., Ritter, C., Alexander, R. and Conrad, J. 1991 Comparison between conventional and plasma source ion-implanted femoral knee components. J. Appl. Phys. 70, 67576760.Google Scholar
Collins, G., Hutchings, R., Tendys, J. and Samandi, M. 1994 Advanced surface treatments by plasma ion implantation. Surf. Coat. Technol. 68, 285293.Google Scholar
Conrad, J. R. 1987 Sheath thickness and potential profiles of ion-matrix sheaths for cylindrical and spherical electrodes. J. Appl. Phys. 62, 777779.Google Scholar
Emmert, G. and Henry, M. 1992 Numerical simulation of plasma sheath expansion, with applications to plasma-source ion implantation. J. Appl. Phys. 71, 113117.Google Scholar
Ghomi, H., Sharifian, M., Niknam, A. R. and Shokri, B. 2006 Effects of potential and duration of pulse width on sheath dynamics related to a target with a groove in two-dimensional simulation. J. Appl. Phys. 100, 113301.Google Scholar
Gong, Y., Wang, X., Duan, P., Yu, J. and Wang, D. 2005 Numerical studies of collisionless and collisional sheath evolution in plasma source ion implantations. Phys. Plasmas 12, 043501.Google Scholar
Kellerman, P. L., Qin, S., Bradley, M. P. and Saadatmand, K. 2002 Ion depletion effects in sheath dynamics during plasma immersion ion implantation: models and data. Rev. Sci. Instrum. 73, 837.Google Scholar
Masamune, S. and Yukimura, K. 2003 Ion implantation to inner surface of a cylinder. Nucl. Instrum. Methods Phys. Res. 206, 682686.CrossRefGoogle Scholar
Miyagawa, Y., Ikeyama, M., Miyagawa, S., Tanaka, M. and Nakadate, H. 2007 Plasma analysis for the plasma immersion ion implantation processing by a PIC-MCC simulation. Comput. Phys. Commun. 177, 8487.CrossRefGoogle Scholar
Miyagawa, Y., Nakadate, H., Tanaka, M., Ikeyama, M. and Miyagawa, S. 2004 Particle-in-cell/Monte Carlo simulation for PBII processing of a trench shaped target and a cylindrical target. Surf. Coat. Technol. 186, 29.Google Scholar
Pillaca, E. J. D. M., Ueda, M., Kostov, K. G. and Reuther, H. 2012 Study of plasma immersion ion implantation into silicon substrate using magnetic mirror geometry. Appl. Surf. Sci. 258, 95649569.CrossRefGoogle Scholar
Qi, S., Lifang, X., Xinxin, M. and Mingren, S. 2003a Effect of plasma density on the distribution of incident ions and depth profile in plasma-based ion implanted layers. Appl. Surf. Sci. 206, 5359.Google Scholar
Qi, S., Lifang, X., Xinxin, M. and Mingren, S. 2003b Measured and calculated retained dose with different process parameters in plasma based ion implantation. Surf. Coat. Technol. 173, 117121.Google Scholar
Qi, S., Xinxin, M. and Lifang, X. 2000 Effect of pulse waveform on plasma sheath expansion in plasma-based ion implantation. Nucl. Instrum. Methods Phys. Res. 170, 397405.Google Scholar
Qin, S., Chan, C. and Jin, Z. 1996 Plasma immersion ion implantation model including multiple charge state. J. Appl. Phys. 79, 34323437.Google Scholar
Qin, S., Jin, Z. and Chan, C. 1995 Dynamic sheath model of collisionless multispecies plasma immersion ion implantation. J. Appl. Phys. 78, 5560.Google Scholar
Rauschenbach, B. and Mändl, S. 2003 Plasma-sheath expansion around trenches in plasma immersion ion implantation. Nucl. Instrum. Methods Phys. Res. 206, 803807.Google Scholar
Sakudo, N., Shinohara, T., Amaya, S., Endo, H., Okuji, S. and Ikenaga, N. 2006 Ion implantation into concave polymer surface. Nucl. Instrum. Methods Phys. Res. 242, 349352.Google Scholar
Sharifian, M. and Shokri, B. 2008 Effects of fast monoenergetic electrons on the ion dynamics near the cathode in a pulsed direct current plasma sheath. Phys. Plasmas 15, 033503.Google Scholar
Suraj, K. S. and Mukherjee, S. 2005 Effect of ion neutral collisions on the ion and neutral velocity distribution on negatively biased electrodes. Surf. Coat. Technol. 196, 267270.Google Scholar
Tian, X., Gong, C., Huang, Y., Jiang, H., Yang, S., Fu, R. K. Y. and Chu, P. K. 2009 Theoretical investigation of plasma immersion ion implantation of cylindrical bore using hollow cathode plasma discharge. Surf. Coat. Technol. 203, 27272730.Google Scholar
Tian, X., Zeng, X. and Chu, P. K. 2001 Process and electrical (modulator) efficiency of plasma immersion ion implantation. IEEE Trans. Plasma Sci. 29, 529535.Google Scholar
Tian, X. B., Chu, P. K., Fu, R. and Yang, S. Q. 2004 Hybrid processes based on plasma immersion ion implantation: a brief review. Surf. Coat. Technol. 186, 190195.CrossRefGoogle Scholar
Tian, X. B., Fu, K. Y., Chu, P. K. and Yang, S. Q. 2005 Plasma immersion ion implantation of insulating materials. Surf. Coat. Technol. 196, 162166.Google Scholar