Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-26T05:43:20.989Z Has data issue: false hasContentIssue false

Faraday–Fresnel rotation and splitting of orbital angular momentum carrying waves in a rotating plasma

Published online by Cambridge University Press:  29 September 2021

J.-M. Rax
Affiliation:
IJCLab – Université de Paris-Saclay and Département de Physique – Ecole Polytechnique, 91405Orsay, France
R. Gueroult*
Affiliation:
LAPLACE, Université de Toulouse, CNRS, INPT, UPS, 31062Toulouse, France
*
Email address for correspondence: [email protected]

Abstract

Rotational Fresnel drag – or orbital Faraday rotation – in a rotating magnetised plasma is uncovered and studied analytically for Trivelpiece–Gould and whistler–helicon waves carrying orbital angular momentum (OAM). Plasma rotation is shown to introduce a non-zero phase shift between OAM-carrying eigenmodes with opposite helicities, similarly to the phase shift between spin angular momentum eigenmodes associated with the classical Faraday effect in a magnetised plasma at rest. By examining the dispersion relation for these two low-frequency modes in a Brillouin rotating plasma, this Faraday–Fresnel rotation effect is traced back to the combined effects of Doppler shift, centrifugal forces and Coriolis forces. In addition, the longitudinal group velocity in the presence of rotation is shown to depend both on rotation and azimuthal mode, therefore predicting the Faraday–Fresnel splitting of the envelope of a wave packet containing a superposition of OAM-carrying eigenmodes with opposite helicities.

Type
Research Article
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Allen, L., Beijersbergen, M.W., Spreeuw, R.J.C. & Woerdman, J.P. 1992 Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys. Rev. A 45 (11), 81858189.CrossRefGoogle ScholarPubMed
Anderson, O.A., Baker, W.R., Bratenahl, A., Furth, H.P., Ise, J.J., Kunkel, W.B. & Stone, J.M. 1958 In Proceedings of the 2nd United Nations International Conference on the Peaceful Uses of Atomic Energy, Geneva, vol. 32, p. 155.Google Scholar
Balbus, S.A. & Hawley, J.F. 1998 Instability, turbulence, and enhanced transport in accretion disks. Rev. Mod. Phys. 70 (1), 153.CrossRefGoogle Scholar
Barnett, S.M. & Allen, L. 1994 Orbital angular momentum and nonparaxial light beams. Opt. Commun. 110 (5–6), 670678.CrossRefGoogle Scholar
Barnett, S.M., Babiker, M. & Padgett, M.J. 2017 Optical orbital angular momentum. Phil. Trans. R. Soc. Lond. A 375 (2087), 20150444.Google ScholarPubMed
Bekhtenev, A.A., Volosov, V.I., Pal'chikov, V.E., Pekker, M.S. & Yudin, Y.N. 1980 Problems of a thermonuclear reactor with a rotating plasma. Nucl. Fusion 20 (5), 579598.CrossRefGoogle Scholar
Benomar, O., Bazot, M., Nielsen, M.B., Gizon, L., Sekii, T., Takata, M., Hotta, H., Hanasoge, S., Sreenivasan, K.R. & Christensen-Dalsgaard, J. 2018 Asteroseismic detection of latitudinal differential rotation in 13 sun-like stars. Science 361 (6408), 12311234.CrossRefGoogle ScholarPubMed
Bonnevier, B. 1966 Diffusion due to ion-ion collisions in a multicomponent plasma. Ark. Fys. 33, 255.Google Scholar
Brillouin, L. 1945 A theorem of Larmor and its importance for electrons in magnetic fields. Phys. Rev. 67 (7–8), 260266.CrossRefGoogle Scholar
Chen, Q., Qin, H. & Liu, J. 2017 Photons, phonons, and plasmons with orbital angular momentum in plasmas. Sci. Rep. 7 (1).Google ScholarPubMed
Davidson, R.C. 2001 Physics of Nonneutral Plasmas. Imperial College Press.CrossRefGoogle Scholar
Dolgolenko, D.A. & Muromkin, Y.A. 2009 Plasma isotope separation based on ion cyclotron resonance. Phys.-Usp. 52 (4), 345357.CrossRefGoogle Scholar
Dolgolenko, D.A. & Muromkin, Y.A. 2017 Separation of mixtures of chemical elements in plasma. Phys.-Usp. 60 (10), 994.CrossRefGoogle Scholar
Ellis, R.F., Case, A., Elton, R., Ghosh, J., Griem, H., Hassam, A., Lunsford, R., Messer, S. & Teodorescu, C. 2005 Steady supersonically rotating plasmas in the Maryland centrifugal experiment. Phys. Plasmas 12 (5), 055704.CrossRefGoogle Scholar
Faraday, M. 1846 On the magnetization of light and the illumination of magnetic lines of force. Phil. Trans. Roy. Soc. Lond. 136 (1), 120.Google Scholar
Fetterman, A.J. & Fisch, N.J. 2008 Alpha channeling in a rotating plasma. Phys. Rev. Lett. 101 (20), 205003.CrossRefGoogle Scholar
Fetterman, A.J. & Fisch, N.J. 2010 Alpha channeling in rotating plasma with stationary waves. Phys. Plasmas 17 (4), 042112.CrossRefGoogle Scholar
Franke-Arnold, S., Gibson, G., Boyd, R.W. & Padgett, M.J. 2011 Rotary photon drag enhanced by a slow-light medium. Science 333 (6038), 65.CrossRefGoogle ScholarPubMed
Fresnel, A. 1818 Lettre d’ Augustin Fresnel à François Arago sur l’ influence du mouvement terrestre dans quelques phénomènes d'optique. Ann. Chim. Phys. 9, 5766.Google Scholar
Götte, J.B., Barnett, S.M. & Padgett, M. 2007 On the dragging of light by a rotating medium. Proc. R. Soc. A 463 (2085), 21852194.CrossRefGoogle Scholar
Gough, W. 1986 The angular momentum of radiation. Eur. J. Phys. 7 (2), 8187.CrossRefGoogle Scholar
Gueroult, R., Rax, J.-M. & Fisch, N.J. 2020 Enhanced tuneable rotatory power in a rotating plasma. Phys. Rev. E 102 (5), 051202(R).CrossRefGoogle Scholar
Gueroult, R., Shi, Y., Rax, J.-M. & Fisch, N.J. 2019 a Determining the rotation direction in pulsars. Nat. Commun. 10 (1), 3232.CrossRefGoogle ScholarPubMed
Gueroult, R., Zweben, S.J., Fisch, N.J. & Rax, J.-M. 2019 b $E\times B$ configurations for high-throughput plasma mass separation: an outlook on possibilities and challenges. Phys. Plasmas 26 (4), 043511.CrossRefGoogle Scholar
Jones, R.V. 1976 Rotary aether drag. Proc. R. Soc. Lond. A 349 (1659), 423439.Google Scholar
Klozenberg, J.P., McNamara, B. & Thonemann, P.C. 1965 The dispersion and attenuation of helicon waves in a uniform cylindrical plasma. J. Fluid Mech. 21 (3), 545563.CrossRefGoogle Scholar
Kolmes, E.J., Ochs, I.E., Mlodik, M.E., Rax, J.-M., Gueroult, R. & Fisch, N.J. 2019 Radial current and rotation profile tailoring in highly ionized linear plasma devices. Phys. Plasmas 26 (8), 082309.CrossRefGoogle Scholar
Kostyukov, I.Y., Shvets, G., Fisch, N.J. & Rax, J.M. 2002 Magnetic-field generation and electron acceleration in relativistic laser channel. Phys. Plasmas 9 (2), 636648.CrossRefGoogle Scholar
Krishnan, M., Geva, M. & Hirshfield, J.L. 1981 Plasma centrifuge. Phys. Rev. Lett. 46 (1), 3638.CrossRefGoogle Scholar
Leach, J., Wright, A.J., Götte, J.B., Girkin, J.M., Allen, L., Franke-Arnold, S., Barnett, S.M. & Padgett, M.J. 2008 ‘Aether Drag’ and moving images. Phys. Rev. Lett. 100 (15), 153902.CrossRefGoogle Scholar
Lehnert, B. 1962 Stabilization of flute disturbances by the Coriolis force. Phys. Fluids 5 (6), 740.CrossRefGoogle Scholar
Lehnert, B. 1971 Rotating plasmas. Nucl. Fusion 11 (5), 485.CrossRefGoogle Scholar
Lehner, T., Rax, J.M. & Zou, X.L. 1989 Linear mode conversion by magnetic fluctuations in inhomogeneous magnetized plasmas. Europhys. Lett. 8 (8), 759764.CrossRefGoogle Scholar
Liziakin, G., Antonov, N., Usmanov, R., Melnikov, A., Timirkhanov, R., Vorona, N., Smirnov, V.S., Oiler, A., Kislenko, S., Gavrikov, A., et al. 2021 Experimental demonstration of plasma mass separation in a configuration with a potential well and crossed electric and magnetic fields. Plasma Phys. Control. Fusion 63 (3), 032002.CrossRefGoogle Scholar
Mendonça, J.T. 2012 a Kinetic description of electron plasma waves with orbital angular momentum. Phys. Plasmas 19 (11), 112113.CrossRefGoogle Scholar
Mendonça, J.T. 2012 b Twisted waves in a plasma. Plasma Phys. Control. Fusion 54 (12), 124031.CrossRefGoogle Scholar
Mendonca, J.T., Ali, S. & Thidé, B. 2009 Plasmons with orbital angular momentum. Phys. Plasmas 16 (11), 112103.CrossRefGoogle Scholar
Milner, A.A., Steinitz, U., Averbukh, I.S. & Milner, V. 2021 Observation of mechanical Faraday effect in gaseous media. Phys. Rev. Lett. 127 (7), 073901.CrossRefGoogle ScholarPubMed
Ochs, I.E. & Fisch, N.J. 2017 Particle orbits in a force-balanced, wave-driven, rotating torus. Phys. Plasmas 24, 092513.CrossRefGoogle Scholar
Ohkawa, T. & Miller, R.L. 2002 Band gap ion mass filter. Phys. Plasmas 9 (12), 51165120.CrossRefGoogle Scholar
Padgett, M., Whyte, G., Girkin, J., Wright, A., Allen, L., Öhberg, P. & Barnett, S.M. 2006 Polarization and image rotation induced by a rotating dielectric rod: An optical angular momentum interpretation. Opt. Lett. 31 (14), 2205.CrossRefGoogle ScholarPubMed
Player, M.A. 1976 On the dragging of the plane of polarization of light propagating in a rotating medium. Proc. R. Soc. A 349 (1659), 441.Google Scholar
Prasad, R.R. & Krishnan, M. 1987 Rigid rotor equilibria of multifluid, neutral plasma columns in crossed electric and magnetic fields. Phys. Fluids 30 (11), 3496.CrossRefGoogle Scholar
Rax, J.-M. & Gueroult, R. 2016 Rotation and instabilities for isotope and mass separation. J. Plasma Phys. 82, 595820504.CrossRefGoogle Scholar
Rax, J.-M. & Robiche, J. 2010 Theory of unfolded cyclotron accelerator. Phys. Plasmas 17 (10).CrossRefGoogle Scholar
Rax, J.-M., Robiche, J. & Fisch, N.J. 2007 Autoresonant ion cyclotron isotope separation. Phys. Plasmas 14 (4), 043102.CrossRefGoogle Scholar
Rax, J.M., Fruchtman, A., Gueroult, R. & Fisch, N.J. 2015 Breakdown of the Brillouin limit and classical fluxes in rotating collisional plasmas. Phys. Plasmas 22 (9), 092101.CrossRefGoogle Scholar
Rax, J.M., Gueroult, R. & Fisch, N.J. 2017 Efficiency of wave-driven rigid body rotation toroidal confinement. Phys. Plasmas 24 (3), 032504.CrossRefGoogle Scholar
Rax, J.M., Kolmes, E.J., Ochs, I.E., Fisch, N.J. & Gueroult, R. 2019 Nonlinear ohmic dissipation in axisymmetric DC and RF driven rotating plasmas. Phys. Plasmas 26 (1), 012303.CrossRefGoogle Scholar
Robiche, J. & Rax, J.-M. 2008 Relativistic wave-induced splitting of the Langmuir mode in a magnetized plasma. Phys. Rev. E 77 (1), 016402.CrossRefGoogle Scholar
Ruseckas, J., Juzeliũnas, G., Öhberg, P. & Barnett, S.M. 2007 Polarization rotation of slow light with orbital angular momentum in ultracold atomic gases. Phys. Rev. A 76 (5), 053822.CrossRefGoogle Scholar
Shinohara, S. & Horii, S. 2007 Initial trial of plasma mass separation by crossed electric and magnetic fields. Japan. J. Appl. Phys. 46 (7R), 4276.CrossRefGoogle Scholar
Shukla, P.K. 2012 Twisted shear Alfvén waves with orbital angular momentum. Phys. Lett. A 376 (44), 27922794.CrossRefGoogle Scholar
Shvets, G., Fisch, N.J. & Rax, J.-M. 2002 Magnetic field generation through angular momentum exchange between circularly polarized radiation and charged particles. Phys. Rev. E 65 (4), 046403.CrossRefGoogle ScholarPubMed
Steinitz, U. & Averbukh, I.S. 2020 Giant polarization drag in a gas of molecular super-rotors. Phys. Rev. A 101 (2), 021404.CrossRefGoogle Scholar
Stenzel, R.L. 2016 Whistler waves with angular momentum in space and laboratory plasmas and their counterparts in free space. Adv. Phys. X 1 (4), 687710.Google Scholar
Stenzel, R.L. 2019 Whistler modes excited by magnetic antennas: a review. Phys. Plasmas 26 (8), 080501.CrossRefGoogle Scholar
Stenzel, R.L. & Urrutia, J.M. 2014 Magnetic antenna excitation of Whistler modes. II. Antenna arrays. Phys. Plasmas 21 (12), 122108.CrossRefGoogle Scholar
Stenzel, R.L. & Urrutia, J.M. 2015 a Helicon modes in uniform plasmas. III. Angular momentum. Phys. Plasmas 22 (9), 092113.CrossRefGoogle Scholar
Stenzel, R.L. & Urrutia, J.M. 2015 b Helicon waves in uniform plasmas. II. High $m$ numbers. Phys. Plasmas 22 (9), 092112.CrossRefGoogle Scholar
Stenzel, R.L. & Urrutia, J.M. 2016 Trivelpiece-Gould modes in a uniform unbounded plasma. Phys. Plasmas 23 (9), 092103.CrossRefGoogle Scholar
Stenzel, R.L. & Urrutia, J.M. 2018 Helicons in uniform fields. II. Poynting vector and angular momenta. Phys. Plasmas 25 (3), 032112.CrossRefGoogle Scholar
Stix, T.H. 1971 Some toroidal equilibria for plasma under magnetoelectric confinement. Phys. Fluids 14 (3), 692.CrossRefGoogle Scholar
Stix, T.H. 1992 Waves in Plasmas. AIP Press.Google Scholar
Thaury, C., Guillaume, E., Corde, S., Lehe, R., Le Bouteiller, M., Ta Phuoc, K., Davoine, X., Rax, J.M., Rousse, A. & Malka, V. 2013 Angular-momentum evolution in laser-plasma accelerators. Phys. Rev. Lett. 111 (13), 135002.CrossRefGoogle ScholarPubMed
Trivelpiece, A.W. & Gould, R.W. 1959 Space charge waves in cylindrical plasma columns. J. Appl. Phys. 30 (11), 17841793.CrossRefGoogle Scholar
Uberoi, C. & Das, G.C. 1970 Wave propagation in cold plasma in the presence of the Coriolis force. Plasma Phys. 12 (9), 661684.CrossRefGoogle Scholar
Urrutia, J.M. & Stenzel, R.L. 2015 a Helicon modes in uniform plasmas. I. Low m modes. Phys. Plasmas 22 (9), 092111.CrossRefGoogle Scholar
Urrutia, J.M. & Stenzel, R.L. 2015 b Magnetic antenna excitation of whistler modes. III. Group and phase velocities of wave packets. Phys. Plasmas 22 (7), 072109.CrossRefGoogle Scholar
Urrutia, J.M. & Stenzel, R.L. 2016 Helicon waves in uniform plasmas. IV. Bessel beams, Gendrin beams, and helicons. Phys. Plasmas 23 (5), 052112.CrossRefGoogle Scholar
van Enk, S.J. & Nienhuis, G. 1994 Spin and orbital angular momentum of photons. Europhys. Lett. 25 (7), 497501.CrossRefGoogle Scholar
Weng, S., Zhao, Q., Sheng, Z., Yu, W., Luan, S., Chen, M., Yu, L., Murakami, M., Mori, W.B. & Zhang, J. 2017 Extreme case of Faraday effect: magnetic splitting of ultrashort laser pulses in plasmas. Optica 4 (9), 1086.CrossRefGoogle Scholar
Wilcox, J.M. 1959 Review of high-temperature rotating-plasma experiments. Rev. Mod. Phys. 31 (4), 10451051.CrossRefGoogle Scholar
Wisniewski-Barker, E., Gibson, G.M., Franke-Arnold, S., Boyd, R.W. & Padgett, M.J. 2014 Mechanical Faraday effect for orbital angular momentum-carrying beams. Opt. Express 22 (10), 1169011697.CrossRefGoogle ScholarPubMed
Zweben, S.J., Gueroult, R. & Fisch, N.J. 2018 Plasma mass separation. Phys. Plasmas 25 (9), 090901.CrossRefGoogle Scholar