Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-25T06:36:56.208Z Has data issue: false hasContentIssue false

Experimental study of force-free, collinear plasma structures

Published online by Cambridge University Press:  13 March 2009

E. E. Nolting
Affiliation:
Department of Physics, University of Miami
P. E. Jindra
Affiliation:
Department of Physics, University of Miami
D. R. Wells
Affiliation:
Department of Physics, University of Miami

Abstract

Detailed measurements of the trapped magnetic fields and currents in plasma structures generated by conical theta-pinches are reported. Studies of these structures interacting with a magnetic barrier, and with each other in a collision at the centre of a magnetic mirror, are reported. The magnetic well formed by the collision has been studied by simultaneous use of several diagnostic techniques. The measurements are in agreement with a force-free, collinear magnetic field configuration (Wells 1972). Arguments relating superposability and collinearity of flow fields to these observations are given.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1973

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Berlund, S., Westerlund, S. & Svennerstedt, S. 1963 J. Sci. Instr. 40, 250.CrossRefGoogle Scholar
Bjorum, O. & Godal, T. 1952 Universitet I Bergen, Naturvitenskapelig, rekke 13.Google Scholar
Chandrasekhar, S. 1956 Proc. Nat. Acad. Sci. U.S. 42, 1.CrossRefGoogle Scholar
Cooke, F. N. & Hirschberg, J. G. 1970 J. Opt. Soc. Amer. 11, 1570.Google Scholar
Gold, R. R. 1960 Arch. Rat. Mech. Anal. 6, 382.CrossRefGoogle Scholar
Herzog, R. F. K. & Tishler, O. 1953 Rev. Sci. Instr. 24, 1000.CrossRefGoogle Scholar
Jones, W. B. & Miller, R. D. 1967 General Electric Research and Development Rep, 67-C-178.Google Scholar
Kapur, J. N. 1959 Appl. Sci. Research, 8 A, 198.CrossRefGoogle Scholar
Kapur, J. N. 1960 Appl. Sci. Research, 9 A, 139.CrossRefGoogle Scholar
Lundquist, S. 1952 Arkiv Fysik, 15, 297.Google Scholar
Lust, R. & Schluter, A. 1954 Z. Astrophys. 34, 263.Google Scholar
Marshall, J. 1960 Plasma Acceleration. 4th Lockheed Symp. on Magnetohydrodynamics. Stanford University Press.Google Scholar
Miller, B. 1966 Rev. Sci. Instr. 37, 7.CrossRefGoogle Scholar
Nolting, E. E. 1971 a Rev. Sci. Instr. 42, 8, 1262.CrossRefGoogle Scholar
Nolting, E. E. 1971 b Ph.D. thesis, University of Miami.Google Scholar
Small, R. L. 1968 Rev. Sci. Instr. 39, 256.CrossRefGoogle Scholar
Valsamakis, E. A. 1966 Rev. Sci. Instr. 37, 1318.CrossRefGoogle Scholar
Wakefield, K. E. 1962 Design of multilayer force free coils. Princeton University Plasma Phys. Lab.Google Scholar
Wells, D. R. 1964 Princeton University Plasma Phys. Lab. Rep. MATT 196.Google Scholar
Wells, D. R. 1966 Phys. Fluids, 9, 1010.CrossRefGoogle Scholar
Wells, D. R. 1970 J. Plasma Phys. 4, 645.CrossRefGoogle Scholar
Wells, D. R. 1972 (To be published.)Google Scholar
Wells, D. R. 1972 The current algebra of global MHD stability. University of Miami Rep. MIAPH-PP-70. 13.Google Scholar
Wells, D. R. & Norwood, J. 1969 J. Plasma Phys. 3, 21.CrossRefGoogle Scholar
Wright, E. S. & Jahn, R. G. 1965 Rev. Sci. Instr. 36, 1891.CrossRefGoogle Scholar
Young, M. P.Lupton, W. H. & Kolb, A. C. 1967 Naval Res. Lab. Washington Rep. 6422.Google Scholar