Published online by Cambridge University Press: 13 March 2009
It is shown, using kinetic equations with BGK model collision integrals, that in a multi-species weakly ionized plasma the quasi-perpendicular ion-cyclotron instability (waves of growing amplitude) excited by the electron drift parallel to the background magnetic field first sets in for long waves (modal wavelengths much larger than the electron mean free path) as the drift is gradually increased, much as in plasmas with only one ion species. Only waves with modal frequencies close to some cyclotron harmonics of some of the ion species present are taken into account in the present work. Owing to the mutual commensurability of all the ion-cyclotron frequencies, more than one species of ions may be ‘resonant’ with any mode of the type considered. The role of ‘resonant’ and ‘non-resonant’ ion species is investigated, both in general and for some particular plasmas. Some numerical details are also given. It is shown that although in most instances the threshold drifts vary monotonically (but not linearly) as the plasma composition is varied, there are cases in which maxima or minima (often depending on the degree of non-isothermality) of the threshold drift magnitude are predicted for some specific plasma compositions. These are usually encountered in plasmas containing ions with different charge numbers.