Published online by Cambridge University Press: 13 March 2009
The process of spontaneous excitation of electromagnetic (non-potential) and quasi-perpendicular (with respect to the external magnetic field) ion cyclotron waves by electron drift in a weakly ionized plasma is analysed. An infinite plasma placed in mutually parallel d.c. electric and magnetic fields is considered, and its dynamics is described by kinetic equations with BGK model collision integrals. The threshold electron drift necessary for the onset of the corresponding ion cyclotron instability is evaluated. It is shown that the instability sets in first for wavelengths much larger than the electron mean free path, so that the electron collisions, dominant in this range of wavelengths, play a facilitating rather than an impeding role in this process. The results are compared with those for the spontaneous excitation of electrostatic (potential) quasi-perpendicular ion cyclotron waves and, for the same set of plasma parameters, the threshold drift is found to be smaller for the electromagnetic waves.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.