Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-03T08:28:56.339Z Has data issue: false hasContentIssue false

Evolution of nonlinearly coupled drift wave-zonal flow system in a nonuniform magnetoplasma

Published online by Cambridge University Press:  18 February 2010

D. JOVANOVIC
Affiliation:
Institute of Physics, 11001 Belgrade, Serbia ([email protected])
P. K. SHUKLA
Affiliation:
Institut für Theoretische Physik IV, Fakultät für Physik und Astronomie, Ruhr-Universität Bochum, D-44780 Bochum, Germany
B. ELIASSON
Affiliation:
Institut für Theoretische Physik IV, Fakultät für Physik und Astronomie, Ruhr-Universität Bochum, D-44780 Bochum, Germany
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The amplitude modulation of a finite amplitude drift wave by zonal flows in a non-uniform magnetoplasma is considered. The evolution of a nonlinearly coupled drift wave-zonal flow (DW-ZF) system is governed by a nonlinear equation for the slowly varying envelope of the drift waves, which drives (via the Reynolds stress of the drift wave envelope) the second equation for zonal flows. The nonlinear dispersion relation for the modulational instability of a drift wave pump is derived and analyzed. In a special case, the DW-ZF system of equations reduces to the cubic nonlinear Schrödinger equation, which admits localized solutions in the form of DW envelope solitons, accompanied by a shock-like ZF structure. Numerical solutions of the nonlinearly coupled DW-ZF systems reveal that an arbitrary spatial distribution of the DW rapidly decays into an array of localized drift wave structures, propagating with different speeds, that are robust and, in many respect, behave as solitons. The corresponding ZF evolves into the sequence of shocks that produces a strong shearing, i.e. multiple plasma flows in alternating directions.

Type
Letter to the Editor
Copyright
Copyright © Cambridge University Press 2010

References

[1]Lin, Z., Hahm, T. S., Lee, W. W., Tang, W. M. and White, R. B. 1998 Science 281, 1835.CrossRefGoogle Scholar
[2]Hasegawa, A. 1985 Adv. Phys. 34, 1.CrossRefGoogle Scholar
[3]Horton, W. and Hasegawa, A. 1994 Chaos 4, 227.CrossRefGoogle Scholar
[4]Kadomtsev, B. B. 1965 Plasma Turbulence. New York: Academic.Google Scholar
[5]Horton, W. 1999 Rev. Mod. Phys. 71, 735.CrossRefGoogle Scholar
[6]Weiland, J. 2000 Collective Modes in Inhomogeneous Plasma: Kinetic and Advanced Fluid Theory. Bristol, UK: IOP Publishing.Google Scholar
[7]Sagdeev, R. Z., Shapiro, V. D. and Shevchenko, V. I. 1978 Zh. Eksp. Teor. Fiz. Pisma Red. 27, 361; [1978 JETP Lett. 27, 390; 1978 Fiz. Plazmy 4, 551; 1978 Sov. J. Plasma Phys. 4, 306].Google Scholar
[8]Shukla, P. K., Yu, M. Y., Rahman, H. U. and Spatschek, K. H. 1981 Phys. Rev. A 23, 321.CrossRefGoogle Scholar
[9]Shukla, P. K., Yu, M. Y., Rahman, H. U. and Spatschek, K. H. 1984 Phys. Rep. 105, 227.CrossRefGoogle Scholar
[10]Smolyakov, A. I., Diamond, P. H. and Malkov, M. 2000 Phys. Rev. Lett. 84, 491.CrossRefGoogle Scholar
[11]Chen, L., Lin, Z. and White, R. 2000 Phys. Plasmas 7, 3129.CrossRefGoogle Scholar
[12]Shukla, P. K. and Stenflo, L. 2002 Eur. Phys. J. D 20, 103.Google Scholar
[13]Diamond, P. H. et al. 2005 Plasma Phys. Control. Fusion 47, R35.CrossRefGoogle Scholar
[14]Fujisawa, A. 2009 Nucl. Fusion 49, 013001.CrossRefGoogle Scholar
[15]Tynan, G. R., Fujisawa, A. and McKee, G. 2009 Plasma Phys. Control. Fusion 51, 11301.Google Scholar
[16]Guo, Z., Chen, L. and Zonca, F. 2009 Phys. Rev. Lett. 103, 055002.CrossRefGoogle Scholar
[17]Shukla, P. K. and Shaikh, D. 2009 Phys. Lett. A 374, 286.CrossRefGoogle Scholar