Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-12-04T19:44:03.563Z Has data issue: false hasContentIssue false

Evaluation of the distribution functions of spatial derivatives of an ionic electric microfield in plasmas by using only the central interactions approach

Published online by Cambridge University Press:  03 April 2013

S. CHIHI
Affiliation:
LRPPS Laboratory, Physics Department, Ouargla University, Ouargla 30000, Algeria ([email protected])
S. GUERRICHA
Affiliation:
LRPPS Laboratory, Physics Department, Ouargla University, Ouargla 30000, Algeria ([email protected])

Abstract

By using some physical approximations, distribution functions of spatial derivatives of components of an electric ionic microfield in plasmas have been theoretically evaluated. The particles are considered quasistatic. Only interactions between charged emitter and perturber ions are taken into account. Our theoretical results have been compared with those found in the literature. The few differences found are discussed. Some properties of distribution functions of spatial derivatives have been deduced from curves.

Type
Papers
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bekefi, G., Deutsch, C. and Yaakobi, B. 1976 Spectroscopic diagnostics of laser plasmas. In: Principles of Laser Plasmas (ed. Bekefi, G.). New York and London: Wiley Interscience, ch. 13, p. 549.Google Scholar
Calisti, A., Bureyeva, L. A., Lisitsa, V. S., Shuvaev, D. and Talin, B. 2007 Eur. Phys. J. D 42, 387392.Google Scholar
Chihi, S. 2005 Doctorate thesis in physics, University of Constantine, Algeria.Google Scholar
Demura, A. V., Demchenko, G. V. and Nikolic, D. 2008 Eur. Phys. J. D 46, 111.Google Scholar
Golosnoy, I. O. 2001 Plasma Phys. Rep. 27, 497.CrossRefGoogle Scholar
Griem, H. R. 1974 Spectral Line Broadening by Plasmas. New York: Academic Press.Google Scholar
Griem, H. R. 1992 Phys. Fluids B 4, 2346.CrossRefGoogle Scholar
Griem, H. R. 1997 Principles of Plasma Spectroscopy. United Kingdom: Cambridge University Press.CrossRefGoogle Scholar
Griem, H. R. 2000 Contrib. Plasma. Phys. 40, 46.3.0.CO;2-M>CrossRefGoogle Scholar
Griem, H. R. 2001 Contrib. Plasma. Phys. 41, 223.3.0.CO;2-K>CrossRefGoogle Scholar
Griem, H. R., Halenka, J. and Olchawa, W. 2005 J. Phys. B 38, 975.Google Scholar
Guerricha, S. 2008 Contribution to the study of the distributions of spatial derivatives of microfields in plasma. Thesis of magister in physics and plasma. University of Ouargla.Google Scholar
Guerricha, S., Chihi, S. and Meftah, M. T. 2008 In: 19th International Conference on Spectral Line Shapes, Valladolid, Spain, 15–20 June (eds. Gigosos, M. A. and González, M. Á.), AIP Conference Proceedings 1058 pp. 7274.Google Scholar
Halenka, J. and Olchawa, W. 2007 Eur. Phys. J. D 42, 425.Google Scholar
Holtsmark, J. 1919 Ann. Phys. (Leipzig) 58, 577.CrossRefGoogle Scholar
Kilcrease, D. P. and Murillo, M. S. 2000 J. Quant. Spect. Radiat. Transf. 65, 343.CrossRefGoogle Scholar
Nersisyan, H. B., Toepffer, C. and Zwicknagel, G. 2005 Phys. Rev. E 72, 036403.Google Scholar
Potekhin, A. Y., Chabrier, G. and Gilles, D. 2002 Phys. Rev. E 65, 036412.Google Scholar
Reichl, L. E. 1997 A Modern Course in Statistical Physics, 2nd edn.New York: Wiley.Google Scholar
Salzmann, D. 1998 Atomic Physics in Hot Plasmas. New York: Oxford University Press.CrossRefGoogle Scholar
Uchaikin, V. V. and Zolotarev, V. M. 1999 Chance and Stability Stable Distributions and their Applications. Utrecht, the Netherlands: VSP.CrossRefGoogle Scholar