Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-12T12:23:14.177Z Has data issue: false hasContentIssue false

Electron-acoustic solitons in a weakly relativistic plasma

Published online by Cambridge University Press:  13 March 2009

R. L. Mace
Affiliation:
Plasma Physics Research Institute, Department of Physics, University of Natal, Durban, South Africa
M. A. Hellberg
Affiliation:
Plasma Physics Research Institute, Department of Physics, University of Natal, Durban, South Africa
R. Bharuthram
Affiliation:
Department of Physics, University of Durban-Westville, Durban, South Africa, and Plasma Physics Research Institute, University of Natal
S. Baboolal
Affiliation:
Department of Computer Science, University of Durban-Westville, Durban, South Africa, and Plasma Physics Research Institute, University of Natal

Abstract

Weakly relativistic electron-acoustic solitons are investigated in a two-electron-component plasma whose cool electrons form a relativistic beam. A general Korteweg-de Vries (KdV) equation is derived, in the small-|ø| domain, for a plasma consisting of an arbitrary number of relativistically streaming fluid components and a hot Boltzmann component. This equation is then applied to the specific case of electron-acoustic waves. In addition, the fully nonlinear system of fluid and Poisson equations is integrated to yield electron-acoustic solitons of arbitrary amplitude. It is shown that relativistic beam effects on electron-acoustic solitons significantly increase the soliton amplitude beyond its non-relativistic value. For intermediate- to large-amplitude solitons, a finite cool-electron temperature is found to destroy the balance between nonlinearity and dispersion, yielding soliton break-up. Also, only rarefactive electronacoustic soliton solutions of our equations are found, even though the relativistic beam provides a positive contribution to the nonlinear coefficient of the KdV equation, describing relativistic, nonlinear electron-acoustic waves.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Baboolal, S., Bharuthram, R. & Hellberg, M. A. 1988 J. Plasma Phys. 40, 163.CrossRefGoogle Scholar
Baboolal, S., Bharuthram, R. & Hellberg, M. A. 1989 J. Plasma Phys. 41, 341.CrossRefGoogle Scholar
Baboolal, S., Bharuthram, R. & Hellberg, M. A. 1990 J. Plasma Phys. 44, 1.CrossRefGoogle Scholar
Baboolal, S., Bharuthram, R. & Hellberg, M. A. 1991 J. Plasma Phys. 46, 247.CrossRefGoogle Scholar
Beskin, V. S., Gurevich, A. V. & Istomin, Ya. N. 1983 Soviet Phys. JETP 58, 235.Google Scholar
Chowdhury, A. R., Pakira, G. P. & Paul, S. N. 1988 Physica C 151, 518CrossRefGoogle Scholar
Chowdhury, A. R., Pakira, G. P. & Paul, S. N. 1989 IEEE Trans. Plasma Sci. 17, 1989.CrossRefGoogle Scholar
Das, G. C., Karmakar, B. & Paul, S. N. 1988 IEEE Trans. Plasma Sci. 16, 1988.CrossRefGoogle Scholar
Das, G. C. & Paul, S. N. 1985 Phys. Fluids 28, 823.CrossRefGoogle Scholar
Dubouloz, N., Pottelette, R., Malingre, M., Holmgren, G. & Lindqvist, P. A. 1991 a J. Geophys. Res. 96, 3565.CrossRefGoogle Scholar
Dubouloz, N., Pottelette, R., Malingre, M. & Treumann, R. A. 1991 b Geophys. Res. Lett. 18, 155.CrossRefGoogle Scholar
Gary, S. P. 1987 Phys. Fluids 30, 2745.CrossRefGoogle Scholar
Gary, S. P. & Tokar, R. L. 1985 Phys. Fluids 28, 2439.CrossRefGoogle Scholar
Lin, C. S., Burch, J. L., Shawhan, S. D. & Gurnett, D. 1984 J. Geophys. Res. 89, 925.CrossRefGoogle Scholar
Lin, C. S. & Winske, D. 1987 J. Geophys. Res. 92, 7569.CrossRefGoogle Scholar
Lin, C. S., Winske, D. & Tokar, R. L. 1985 J. Geophys. Res. 90, 8269.CrossRefGoogle Scholar
Lominadze, J. G., Melikidze, G. I. & Pataraya, A. D. 1984 Proceedings of International Conference on Plasma Physics, Lausanne, vol. 2, p. 1043.Google Scholar
Mace, R. L. & Hellberg, M. A. 1990 J. Plasma Phys. 43, 239.CrossRefGoogle Scholar
Mace, R. L., Baboolal, S., Bharuthram, R. & Hellberg, M. A. 1991 J. Plasma Phys. 45, 329.CrossRefGoogle Scholar
Marsch, E. 1985 J. Geophys. Res. 90, 6327.CrossRefGoogle Scholar
Nejoh, Y. 1987 a J. Plasma Phys. 37, 487.CrossRefGoogle Scholar
Nejoh, Y. 1987 b J. Plasma Phys. 38, 439.CrossRefGoogle Scholar
Roychoudhury, R. K. & Bhattacharyya, S. 1987 Phys. Fluids 30, 2582.CrossRefGoogle Scholar
Salahuddin, M. 1990 Plasma Phys. Contr. Fusion 32, 33.CrossRefGoogle Scholar
Schriver, D. & Ashour-Abdalla, M. 1987 J. Geophys. Res. 92, 5807.CrossRefGoogle Scholar
Singh, S. & Dahiya, R. P. 1990 Phys. Fluids B 2, 901.CrossRefGoogle Scholar
Taniuti, T. & Nishihara, K. 1983 Nonlinear Waves, p. 100. Pitman.Google Scholar
Thomsen, M. F., Barr, H. C., Gary, S. P., Feldman, W. C. & Cole, T. E. 1983 J. Geophys. Res. 88, 3035.CrossRefGoogle Scholar
Tokar, R. L. & Gary, S. P. 1984 Geophys. Res. Lett. 11, 1180.CrossRefGoogle Scholar
Watanabe, K. & Taniuti, T. 1977 J. Phys. Soc. Japan 43, 1819.CrossRefGoogle Scholar
Yadav, L. L. & Sharma, S. R. 1989 Proceedings of International Conference on Plasma Physics, New Delhi, vol. 2, p. 781.Google Scholar