Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-12T11:20:19.992Z Has data issue: false hasContentIssue false

Electron pitch-angle diffusion driven by oblique whistler-mode turbulence

Published online by Cambridge University Press:  13 March 2009

L. R. Lyons
Affiliation:
Department of Meteorology, University of California, Los Angeles
R. M. Thorne
Affiliation:
Department of Meteorology, University of California, Los Angeles
C. F. Kennel
Affiliation:
Department of Physics, University of California, Los Angeles

Abstract

A general description of cyclotron harmonic resonant pitch-angle scattering is presented. Quasi-linear diffusion coefficients are prescribed in terms of the wave normal distribution of plasma wave energy. Numerical computations are performed for the specific case of relativistic electrons interacting with a band of low frequency whistler-mode turbulence. A parametric treatment of the wave energy distribution permits normalized diffusion coefficients to be presented graphically solely as a function of the electron pitch-angle.

The diffusion coefficients generally decrease with increasing cyclotron harmonic number. Higher harmonic diffusion is insignificant at very small electron pitch-angles, but becomes increasingly important as the pitch-angle increases. One thus expected the rate of pitch-angle scattering to decrease with increasing electron energy, since the resonant value of the latter varies proportionately with harmonic number. This indicates that, in mirror-type magnet field geometrics, such as the Earth's radiation belts, the diffusion losses of high energy electrons are likely to be appreciably slower than those at low energy. Integration of the diffusion rates along a complete bounce orbit will be required to clarify this point, however, since the high-energy particles will be subject to more rapid first harmonic diffusion near their mirror points.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1971

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Andronov, A. A. & Trakhtengerts, V. Y. 1964 Geomagn. and Aeronomy, 4, 181.Google Scholar
Cornwall, J. M. 1964 J. Geophys. Res. 69, 1251.CrossRefGoogle Scholar
Cornwall, J. M. 1966 J. Geophys. Res. 71, 2185.CrossRefGoogle Scholar
Dragt, A. J. 1961 J. Geophys. Res. 66, 1641.CrossRefGoogle Scholar
Dunckel, N. & Helliwell, R. A. 1969 J. Geophys. Rev. 74, 6371.CrossRefGoogle Scholar
Dungey, J. W. 1963 Planet. Space Sci. 11, 591.CrossRefGoogle Scholar
Engel, R. D. 1965 Phys. Fluids, 8, 939.CrossRefGoogle Scholar
Freden, S. C., Blaku, J. B. & Paulikas, G. A. 1968 Earth's Particles and Fields (ed. McCormac, B.), p. 3. New York: Reinhold.Google Scholar
Kennel, C. F. 1966 Phys. Fluids, 9, 2190.CrossRefGoogle Scholar
Kennel, C. F. 1967 Trans. Am. Geophys. Un. 48, 180. (Abstract.)Google Scholar
Kennel, C. F. 1969 Magnetospheric Physics (ed. Williams, D. and Mead, G.), p. 379. Washington: American Geophysical Union.Google Scholar
Kennel, C. F. & Engelmann, F. 1966 Phys. Fluids, 9, 2377.CrossRefGoogle Scholar
Kennel, C. F. & Petschek, H. E. 1966 a J. Geophys. Res. 71, 1.CrossRefGoogle Scholar
Kennel, C. F. & Petschek, H. E. 1966 b Avco Everett Res. Lab. Rev. Rep. 259.Google Scholar
Kimura, I. 1966 Radio Sci. 1 (new ser.), 269.CrossRefGoogle Scholar
Lerche, I. 1968 Phys. Fluids, 11, 1720.CrossRefGoogle Scholar
Lyons, L. R. & Thorne, R. M. 1970 Planet. Space Sci. 18, 1753.CrossRefGoogle Scholar
Owens, H. D. & Frank, L. A. 1968 J. Geophys. Res. 73, 199.CrossRefGoogle Scholar
Roberts, C. S. 1969 Magnetospheric Physics (ed. Williams, D. and Mead, G.), p. 305. Washington: American Geophysical Union.Google Scholar
Russell, C. T., Holzer, R. E. & Smith, F. J. 1969 J. Geophys. Rev. 74, 755.CrossRefGoogle Scholar
Russell, C. T. & Thorne, R. M. 1970 Cosmic Electrodynamics, 1, 67.Google Scholar
Smith, R. L. & Angermi, J. J. 1968 J. Geophys. Res. 73, 1.CrossRefGoogle Scholar
Stix, T. H. 1962 The Theory of Plasma Waves. McGraw-Hill.Google Scholar
Thorne, R. M., Burton, R. K., Holzer, R. E. & Smith, F. J. 1970 Trans. Am. Geophys. Union, 51, 803. (Abstract.)Google Scholar
Thorne, R. M. & Kennel, C. F. 1967 J. Geophy. Res. 72, 857.CrossRefGoogle Scholar
Tverskoy, B. A. 1967 Geomagn. and Aeronomy, 7, 177.Google Scholar
Vernov, S. N., Gorchakov, E. V., Kuznelsov, S. N., Logachev, Y. I., Sosnovets, E. N. & Stolpovsky, V. G. 1969 Magnetospheric Physics (ed. Williams, D. and Mead, G.), p. 257. Washington: American Geophysical Union.Google Scholar
Williams, D. J. & Smith, A. M. 1965 J. Geophys. Res. 70, 541.CrossRefGoogle Scholar