Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-25T06:37:39.283Z Has data issue: false hasContentIssue false

Electron energization in lunar magnetospheres

Published online by Cambridge University Press:  20 August 2010

R. BINGHAM
Affiliation:
Rutherford Appleton Laboratory, Didcot OX11 0QX, UK ([email protected])
R. BAMFORD
Affiliation:
Rutherford Appleton Laboratory, Didcot OX11 0QX, UK ([email protected])
B. J. KELLETT
Affiliation:
Rutherford Appleton Laboratory, Didcot OX11 0QX, UK ([email protected])
V. D. SHAPIRO
Affiliation:
Department of Physics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA

Abstract

The interaction of the solar wind with lunar surface magnetic fields produces a bow shock and a magnetosphere-like structure. In front of the shock wave energetic electrons up to keV energies are produced. This paper describes how resonant interactions between plasma turbulence in the form of lower-hybrid waves and electrons can result in field aligned electron acceleration. The turbulent wave fields close to the lower-hybrid resonant frequency are excited most probably by the modified two-stream instability, driven by the solar wind ions that are reflected and deflected by the low shock.

Type
Papers
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Runcorn, S. K., Collinson, D. W., O'Reilly, W., Battey, M. H., Stephenson, A. A., Jones, J. M., Manson, A. J. and Readman, P. W. 1970 In: Proc. Apollo 11 Lunar Sci. Conf. Geochim. Cosmochim. Ada Suppl 1, Vol. 3, p. 2369.Google Scholar
[2]Strangeway, D. W., Larson, E. E. and Pearce, C. W. 1970 In: Proc. Apollo 11 Lunar Sci. Conf. Geochim. Cosmochim. Ada Suppl 1, Vol. 3, p. 2435.Google Scholar
[3]Dyal, P., Parkin, C. W. and Sonnet, C. P. 1970 Science 196, 762.CrossRefGoogle Scholar
[4]Dyal, P., Parkin, C. W. and Sonnet, C. P. 1971 NASA SP 272, 227.Google Scholar
[5]Coleman, P. J., Lichtenstein, B. R., Russell, C. T., Sharp, L. R. and Schubert, G. 1972 Proc. Lunar Planet. Sci. Conf. 3, 2271.Google Scholar
[6]Lin, R. R., Mitchell, D. L., Curtis, D. W., Anderson, K. A., Carlson, C. W., McFadden, J., Acuna, M. H., Hood, L. L. and Binder, A. 1998 Science 291, 1480.CrossRefGoogle Scholar
[7]Halekas, J. S., Brain, D. A., Lin, R. P. and Mitchell, D. L. 2007 Adv. Spa. Res. 41, 1319.CrossRefGoogle Scholar
[8]Halekas, J. S., Delory, G. T., Brain, D. A., Lin, R. P. and Mitchell, D. L. 2008 Planet. Spa. Sci. 56, 941.CrossRefGoogle Scholar
[9]Kivelson, M. G., Bargalzc, K., Khurana, L. K. K., Southwood, D. J., Walker, R. J. and Coleman, I. J. 1993 Science 261, 331.CrossRefGoogle Scholar
[10]Bingham, R., Dawson, J. M., Shapiro, V. D., Mendis, D. A. and Kellett, B. J. 1997 Science 275, 49.CrossRefGoogle Scholar
[11]Bingham, R. and Dawson, J. M. 1999 JGR 96, 9837.Google Scholar
[12]Shapiro, V. D., Bingham, R., Dawson, J. M., Kellett, B. J., Dobe, Z. and Mendis, D. A. 1999 JGR 104, 2537.CrossRefGoogle Scholar