Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-25T06:46:58.907Z Has data issue: false hasContentIssue false

The electromagnetic interchange mode in a partly-ionized collisional plasma

Published online by Cambridge University Press:  13 March 2009

Mary K. Hudson
Affiliation:
Department of Physics and Institute of Geophysics and Planetary PhysicsUniversity of California, Los Angeles
Charles F. Kennel
Affiliation:
Department of Physics and Institute of Geophysics and Planetary PhysicsUniversity of California, Los Angeles

Abstract

A collisional electromagnetic dispersion relation is derived from two-fluid theory for the interchange mode coupled to the Alfvé n, acoustic, drift and entropy modes in a partly-ionized plasma. The fundamental electromagnetic nature of the interchange mode is noted: coupling to the intermediate Alfvé n mode is strongly stabilizing for finite k2. Both ion– viscous and ion–neutral stabilization are included; and it is found that collisions destroy the FLR cutoff at short perpendicular wavelengths.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1975

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Balsley, B. B., Haerendel, G. & Greenwald, R. A. 1972 J. Geophys. Res. 77, 5625.CrossRefGoogle Scholar
Braginskii, S. I. 1965 Reviews of Plasma Physics, 1 (ed. Leontovitch, M. A.), p. 205.Google Scholar
Chu, T. K., Coppi, B., Hendel, H. W. & Perkins, F. W. 1969 Phys. Fluids, 12, 203.Google Scholar
Coppi, B. & Mazzucato, E. 1971 Phys. Fluids, 14, 134.Google Scholar
Coroniti, F. V. & Kennel, C. F. 1970 J. Geophys. Res. 75, 1863.Google Scholar
Dungey, J. W. 1956 J. Atmos. Terres. Phys. 9, 304.Google Scholar
Haerendel, G. 1974 Maz-Planck-Institut fur Physic und Astrophysik, preprint.Google Scholar
Hudson, M. K. 1974 Ph.D. thesis, Department of Physics, University of California at Los Angeles.Google Scholar
Hudson, M. K. & Kennel, C. F. 1975 a J. Geophys. Res. (To be published.)Google Scholar
Hudson, M. K. & Kennel, C. F. 1975 b J. Plasma Phys. 14, 135.Google Scholar
Hudson, M. K. & Kennel, C. F. 1975 c Phys. Fluids. (To be published.)Google Scholar
Johnson, F. S. 1965 Satellite Environment Handbook, p. 15. Stanford University Press.Google Scholar
Kennel, C. F. & Greene, J. M. 1966 Ann. Phys. 38, 63.Google Scholar
Krall, N. A. 1968 Advances in Plasma Physics, vol. 1 (ed. Thompson, W. B. and Simon, A.). Academic.Google Scholar
Mikhailovskii, A. B. & Rudakov, L. I. 1963 Soviet Phys. JETP, 17, 621.Google Scholar
Nicolet, M. 1963 J. Atmos. Terrest. Phys. 3, 200.CrossRefGoogle Scholar
Perkins, F. 1973 J. Geophys. Res. 78, 218.Google Scholar
Rishbeth, H. 1971 Plant. Space Sci. 19, 357.CrossRefGoogle Scholar
Rosenbluth, M. N., Krall, N. & Rostoker, N. 1962 Nuclear Fusion Supplement, 1, 143.Google Scholar
Scrunk, R. W. & Walker, J. C. G. 1970 Planet Space Sci. 18, 1535.Google Scholar
Shkarofsky, I. P. 1961 Can. J. Phys. 39, 1619.Google Scholar
Shkarofsky, I. P., Bernstein, I. B. & Robinson, B. B. 1963 Phys. Fluids, 6, 40Google Scholar
Simon, A. 1962 Phys. Fluids, 6, 382.Google Scholar
Spitzer, L. 1967 Physics of Fully-Ionized Cases, p. 227. Interscience.Google Scholar
Stix, T. H. 1969 Phys. Fluids, 12, 627.Google Scholar
Tsai, S. T., Perkins, F. W. & Stix, T. H. 1970 Phys. Fluids, 13, 2108.Google Scholar